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Abstract 

We are interested in the relative performance of various halftoning methods when they 

are used to translate real-valued desired resolution signals into binary control signals for 

variable acuity superpixel imager (VASI) cameras.  This paper describes and compares 

three of the most popular halftoning techniques (classical screening, error diffusion, and 

dithering with blue noise), and we find that when they are considered in that order, the 

techniques form a spectrum moving from low complexity and low results quality to 

medium complexity and high results quality.  We also briefly present the set of metrics 

we will use to measure performance and our plans for future work. 
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1. Introduction 
The variable acuity superpixel imager (VASI) is a recent development in camera 

technology [1].  VASI cameras generate foveated imagery by sharing charges between pixels 

directly on the focal plane array (FPA).  The sharing (or non-sharing) behavior of each pixel is 

specified at frame rate in the form of a binary vector.  With this control signal, multiple foveae 

can be maintained, and they can be created, repositioned, or removed in each frame.  Performing 

foveation on the focal plane also drastically reduces the bandwidth required to transfer images 

off the FPA, allowing effective frame rates up to and above 1000 Hz.  This combination of a 

high field of view, high resolution on regions of interest, low bandwidth, and very high frame 

rates make the VASI camera an attractive sensor for automatic target recognition (ATR) 

applications [2]. 

To use these cameras, however, the user must specify the control signal that defines 

which pixels share charges.  The varying resolution of foveated imagery is typically specified as 

a real-valued desired resolution image.  We believe that the translation between the desired 

resolution and a binary control signal can be based on digital halftoning techniques with little 

additional implementation effort.  This translation must be very efficient to avoid lowering the 

camera’s effective frame rate.  We also believe that stochastic approaches, where the translation 

is probabilistic, are particularly promising.  The objective of our project is to compare how 

different halftoning approaches perform at translating desired resolutions to VASI control signals 

in the context of an ATR application.  The objectives of this survey are to describe the halftoning 

methods we will use and to introduce the quality metrics we will use to measure performance. 

2. Related Work 
Digital halftoning methods (Section 2.1) and quality metrics (Section 2.2) are both well 

represented in the existing literature.  The halftoning problem is analogous to our problem of 
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converting the real-valued desired resolution function to a binary control signal for each VASI 

camera pixel, and quality metrics are required to measure the halftoning methods’ performance. 

2.1 Halftoning 
Digital halftoning, also called spatial dithering, is the process of converting continuous-

intensity images to binary images for display on media that can only produce two intensity levels 

[3].  For our discussion, the original images are assumed to be intensity images, normalized such 

that each pixel’s value falls in the range [0, 1].  The values at each pixel in the resulting 

halftoned image are constrained to be exactly zero (black) or exactly one (white).  There are a 

number of general approaches to halftoning, and many variations on each approach.  Some 

approaches allow more than two intensity levels in the output image.  Others operate on and 

produce color input images.  Neither of those categories will be covered in this survey.  Instead, 

we will focus our attention on three of the most common methods as applied to intensity 

images [4] – classical screening, error diffusion, and dithering with blue noise.  There are many 

other approaches that are not covered in detail here.  Those include but are not limited to: 

• Dot diffusion [5], a hybrid between classical screening and error diffusion 

• Direct binary search [6], a time-consuming iterative approach 

• Look up table methods, which modify other approaches to improve efficiency [7]. 

2.1.1 Classical Screening 
Classical screening, also called ordered dithering, is one of the oldest halftoning methods 

still in common use.  Classical screening is based around the use of a dithering matrix, which has 

values in the range [0, 1].  At each pixel in the image, the pixel’s gray level value is thresholded 

against a particular entry in the dithering matrix.  The pixel is colored black if it falls below the 

threshold and white if it is above.  The threshold is selected by periodically replicating the 

dithering matrix to cover the entire real-valued image.  Most of the research in classical 
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screening revolves around the engineering of the dithering matrix, and some of the most popular 

matrices in current use were introduced by Bayer in [8]. 

Dithering matrices can, at a high level, be classified into two categories – clustered dot 

matrices and dispersed dot matrices.  Clustered dot matrices tend to put black pixels (or ink dots) 

near other black pixels, in a “cluster.”  Clustered dot matrices are commonly used on printing 

devices, where the tendency of ink dots to diffuse through the paper (or other medium) is 

mitigated by the clustering of the dots.  In contrast, dispersed dot matrices tend to spread black 

pixels out more uniformly, and are commonly used when processing images for human 

consumption on displays.  The dispersion of the dots reduces the perception of unpleasant visual 

effects by the human visual system. 

Classical screening is very simple and efficient, but generally produces images of lower 

quality than other methods.  It is a point operation, meaning that the value at a given pixel in the 

halftoned image can be computed using only the value (and location) of that same pixel in the 

original image – without requiring information about the value of neighboring pixels in the 

original or halftoned images.  In general, point operations tend to be more efficient than 

neighborhood operations, which require information from neighboring pixels in the original or 

halftoned image to compute the value at a given pixel.  Both clustered dot dithering and 

dispersed dot dithering suffer, however, from unpleasant visual artifacts introduced by the use of 

a periodic dithering matrix.  As stated above, dispersed dot dithering suffers to a lesser extent 

than clustered dot dithering. 

2.1.2 Error Diffusion 
Error diffusion was introduced by Floyd and Steinberg in [9].  It attempts to spread the 

quantization error introduced at each pixel among neighboring pixels.  Rather than varying the 

threshold as in classical screening, error diffusion quantizes every real-valued pixel against a 
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constant threshold of 0.5.  However, the quantization error (the difference between the quantized 

value and the original value) is then used to modify the pre-quantization values at neighboring 

pixels.  The error is diffused among multiple neighboring pixels according to a weighting 

scheme.  This feedback loop has a kind of anti-hysteretic effect, where a pixel that is quantized 

to 1.0 will increase the likelihood of neighboring pixels being quantized to zero. 

Two aspects of the approach are commonly varied – the error diffusion weighting scheme 

and the scan order of the processing.  A number of alternative weighting schemes have been 

proposed with varying justifications, but the original scheme proposed by Floyd and Steinberg 

gives performance that is comparable or better than others.  The scan order of processing is often 

changed from raster scan to serpentine scan because error diffusion can produce anisotropic 

(directionally-biased) or periodic visual artifacts on areas of constant or near-constant intensity, 

and serpentine scans help to mitigate those visual effects. 

Error diffusion produces visual results that are superior to classical screening, but at 

increased computational cost.  Because the quantization of a given pixel is affected by 

neighboring pixels (it can potentially be affected by all previously-quantized pixels), error 

diffusion is categorized as a neighborhood operation (and bears the associated increased 

computational complexity).  The process of diffusing the error across neighboring pixels does 

succeed in generally reducing the occurrence of unpleasant visual artifacts, although some 

anisotropy remains.  The visual quality of error diffusion is generally superior to classical 

screening, but typically not as high as dithering with blue noise or direct binary search. 

2.1.3 Dithering With Blue Noise 
Dithering with blue noise (or just “blue noise”) is a method for extending error diffusion, 

and it was introduced by Ulichney in [10].  Blue noise introduces random perturbations into the 

diffusion weights and/or the relative locations to which the error is diffused.  Different blue noise 

  4



techniques vary in the set of perturbations they apply, but are conceptually very similar.  While 

the application of the technique is relatively simple, the analysis supporting its use is somewhat 

involved. 

Ulichney argues the superiority of the blue noise approach based on two metrics – 

anisotropy and radial frequency content.  He argues that because of the characteristics of the 

human visual system, a dithering process will maximize perceived image quality when it 

introduces only blue noise artifacts, defined as isotropic noise that is constrained to high radial 

frequencies.  He derives a metric for anisotropy, or the amount of variation in the frequency 

content at constant radial frequency but varying directions.  Ulichney then compares halftoning 

approaches by comparing the anisotropy and radial frequency content of the artifacts introduced 

when the approaches are applied to constant-intensity images.   

Using his metrics, Ulichney shows that blue noise halftoning yields characteristics closer 

to his defined ideal than either classic screening or error diffusion.  His analysis is generally 

accepted and it accurately mirrors subjective evaluations – in terms of perceived quality, blue 

noise outperforms error diffusion, which outperforms classical screening.  Ulichney argues that 

error diffusion performs closer to the ideal in part because the anti-hysteretic effect of the 

feedback loop shapes the noise towards higher frequencies.  Blue noise introduces a relatively 

minor amount of additional computational cost over error diffusion, but this cost can be 

mitigated through efficient random number generators and/or precomputing the set of random 

numbers. 

2.1.4 Comparison of Halftoning Approaches 
Table 1 summarizes the computational complexity and results quality of the halftoning 

methods mentioned above, as well as other popular halftoning methods that were not covered in 

this paper. 
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Halftoning Approach Computational 
Complexity 

Results Quality 

Clustered dot screening Very low Low.  Better for printed media than 
dispersed dot screening. 

Dispersed dot screening Very low Low.  Better for human consumption than 
clustered dot screening. 

Error diffusion Medium  High  
Dithering with blue noise Medium  High 
Dot diffusion Low  High 
Direct binary search Very high  Very high 
Look up tables Very low Varies with the type of approach it is 

based on. 
Table 1: Complexity and quality (for human consumption) of various halftoning methods 

2.2 Performance Assessment 
We will now give a brief description of how we plan to evaluate the performance of the 

halftoning approaches when used to generate VASI control signals.  Because we are targeting 

ATR applications specifically, the most direct way to measure performance would be to use 

actual ATR performance under different halftoning approaches.  Typical ATR metrics include 

false positive rate (incorrect detection), false negative (missed detection) rate, classification 

accuracy, and area under the receiver operator characteristic (ROC) curve [11].  Time limitations 

prevent us from being able to implement this direct approach to performance measurement 

because we would also have to implement the ATR application itself. 

Instead, we will measure performance through more objective image quality metrics.  We 

will compute these metrics on the various halftoned images and then infer the relative expected 

ATR performance.  We will start with simple metrics (taken in the spatial or frequency domains) 

like mean squared error (MSE), signal-to-noise ratio (SNR), and peak signal-to-noise ratio 

(PSNR).  These have been shown to be inappropriate for modeling human perception of image 

quality, but they can be reasonable estimators of vision algorithm performance.  Implementations 

of these metrics are widely available.  We also plan to try adapting Ulichney’s measures of 
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anisotropy and frequency content to compare the power spectra of the non-foveated and foveated 

images.  Finally, we plan to explore the Universal Quality Index developed by Wang et al [12] 

and available for download at [13] and [14]. 

3. Term Project Implementation Plan 
As stated above, the goal of our term project is to compare how different halftoning 

methods perform when translating a desired resolution image into a share/no-share control signal 

at each pixel.  Our performance metrics have been selected to measure the fidelity of the 

foveated images to the original full-resolution images in the context of an automatic target 

recognition application.  We will select a set of test images, likely to include the popular “Lena” 

and “Mandrill” images, and generate our desired resolution functions by hand.  We will 

download (from [15]) implementations of the halftoning approaches detailed in Section 2.1.  If 

time permits we will also implement a stochastic approach of our own design.  We will simulate 

in software the charge sharing behavior of a VASI camera that uses these halftones as control 

signals, and compare the quality of the resulting images with our selected metrics. 

4. Conclusion 
We have briefly presented our motivation for studying various halftoning approaches, 

some of the more popular methods, our approach to quantifying their performance in our 

application, and our plans for future work.  We find that classical screening approaches are the 

least computationally complex but produce the lowest quality results.  Error diffusion and 

dithering with blue noise each offer improvements in quality at the cost of increased complexity.  

We expect the “best” approach in our application to be a balance between computational 

complexity and performance against our selected metrics. 
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