
Surface Ship Location Based On Active 
Sonar Image Data

Daniel E. Huff
Applied Research Laboratories

The University of Texas at Austin

Literature Survey
EE 381K-14 Multidimensional Digital Signal Processing

March 25, 2005

Abstract

A human observer can locate surface ships in sequences of active sonar images based on 

intensity features due to the ship’s hull, wake, and its emitted cavitation noise.  Three different 

sector-scan sonar image target detection and tracking algorithms are examined here that will in-

form further research towards the goal of developing a computer algorithm to perform the sur-

face ship detection.



Introduction

Active sonar emits an acoustic pulse into a body of water and collects signals from an 

array of hydrophones (underwater microphones) in a finite time after the pulse.  Given a constant 

speed of sound, the range to a given target can be calculated from the time it takes the emitted 

acoustic pulse to travel from the sonar to the target and back, divided by 2, and multiplied by the 

speed of sound in water.  Match filtering the hydrophone data with the the transmitted pulse in-

creases the time resolution, and thus the range resolution, that can be extracted from the signal 

data containing reflections of the transmitted pulse.  Beamforming “points”  the response of the 

hydrophone array in a specific direction, or usually, many specific directions.  Such conventional 

signal processing produces an bearing versus range intensity response image per emitted pulse.  

From emitted pulse to the beamformed result, the cycle for one emitted pulse is referred to as a 

“ping,”  for historical reasons (reference?).

In addition to the acoustic reflections, the hydrophones also receive other acoustic energy, 

including cavitation noise produced by a ship’s propeller.  Despite a signal processing chain 

tuned to detect reflections of a transmitted pulse, this energy shows up in the resulting images.

A human observer can visually locate surface ships in the bearing vs. range sonar images 

images by a combination of their characteristics.  An acoustic reflection from the the hull of a 

Fig. 1.
Portion of active sonar image 
showing radial cavitation noise 
spoke and reflection from boat 
wake.  Source: ARL:UT



stationary, silent ship becomes an intensity point in the sonar image.  However, if the ship is 

moving under it’s own power, such a point is swamped by other features.  An acoustic reflection 

from the persistent air bubbles in the ship's wake appears as an intensity line according to the 

wake’s position.  Constant acoustic noise produced by the ship appears as a radial line in the 

image according to the ship’s bearing.  See Figure 1 for an example of an active sonar image 

with a wake reflection and a noise spoke (beam vs. time plotted as azimuth vs. distance).

A variety of applications could benefit from a computer algorithm that could automati-

cally locate surface ships from sequential active sonar data.  In particular, underwater vehicles 

must be able to avoid collisions with ships when surfacing.  This requirement is well illustrated 

by the disastrous February 2001 collision between the USS Greenville nuclear submarine and a 

Japanese fishing boat.  An autonomous underwater vehicle does not have the luxury of a human 

operator, but must still avoid such collisions whether surfacing or docking with a larger ship or 

submarine.

Much work has been published on active sonar image feature tracking.  Much of it is 

devoted to features that appear on the bottom or in the water column, and not to the specific 

problem of avoiding surface ships.  However, many of the concepts studied may be applicable to 

the problem at hand.

In general, target tracking from sonar data has two main parts.  First is a filtering stage to 

refine the sensor data and extract target candidates, and second is a correlation stage to associate 

target candidates with a track.  A matched filter and beamformer, as described above, will as-

sumed to be the first part of the filtering stage for the purposes of this paper.  The implementation 

of the rest of the system varies widely depending on methodology and application.



Optical Flow Method:

Chantler, et. al. devised a method that works over multiple pings to to separate stationary 

targets from moving ones, and then calculate the optical flow of the moving targets [1-2].  First, a 

1-D Fast Fourier Transform (FFT) is applied to the the time sequence of each image pixel across 

multiple pings.  A band pass filter and inverse FFT is applied to obtain images containing the dy-

namic targets, and a low pass filter and inverse FFT is applied to obtain an image with the static 

targets (See Figure 2).  Each image is thresholded to obtain binary images containing distinct 

objects.

The apparent motion of the brightness patterns, or optical flow, of the objects in the dy-

namic images is used to segment the image into significant objects and provide motion informa-

tion about those objects.  These observations are used to find possible associated objects in the 

next image frame; a tracking tree is constructed by progression through multiple frames and re-

cording multiple possible paths.  For each branch of the tree (a possible track), a compatibility 

measure is computed based on the expected position of the object in the next frame.  A cumula-

tive compatibility measure, or confidence value, is recomputed for each branch of the tracking 

tree with each new ping, where the maximum value is reported as the object’s actual track.

Experiments were done with scuba divers moving among a group of pier legs, demon-

strating low confidence measures assigned to tracked noise, and high confidence assigned to the 

divers for a fixed position sonar, a fast sonar ping repetition rate, and smooth target motion.  
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Fig. 3. Processing stages for moving object detection, motion characterization, and tracking.

Fig. 4. FFT processing to separate moving and static observations in a sonar image sequence.

Model-based tracking algorithms [21]–[23] are well suited

for polyhedral and manufactured objects where a wire frame

model exists. In these methods, 3-D polyhedral models of the

objects are given. Detection and segmentation of the moving

target thus reduces to a problem of recognition, which for sonar

observations requires the motion information as a classification

feature [3]–[6].

C. Paper Structure

To better deal with the difficulties identified in Section II-A,

we have chosen to investigate an intuitively appealing ap-

proach to observation detection and tracking using frequency-

domain filtering, optical flow, and a delayed decision tracking

tree. Fig. 3 shows a block diagram overviewing the basic

stages, which also provides the paper structure.

Initially, raw digitized sonar images are preprocessed using

a median filter to remove noise [3]. To identify and dis-

tinguish pixels corresponding to observations of moving and

static objects, a frequency-domain technique using lowpass

and bandpass filtering has proved effective and is described in

Section III. Those observations which are identified as moving

then have their motion information characterized (described

in Section IV), using an optical flow method from [24]. The

method is augmented by smoothing to maintain the velocity

gradient constraint in space and time, and an association stage

to produce results for only significant observations in the

image.

Section V then describes a relaxation method which prob-

abilistically associates velocity information from observations

in contiguous frames to perform the tracking. The optical

flow data is used both to constrain the search areas and to

provide information for matching observations in consecutive

images. The degree of match is measured by a compatibility

measure and recorded in a tracking tree. As multiple tracks

are kept and cumulative totals are maintained, the system

has the ability to revise its decisions in the light of new

Fig. 2.  Simplified block diagram for optical flow method [1-2].



When these latter assumptions are violated, the algorithm gives significantly degraded perform-

ance.  However, the algorithm was applied to a moving sonar platform, detecting fixed position 

objects (the pier legs), which were tracked with high confidence.

Recurrent Neural Network method:

Perry and Guan developed a method to detect small man-made objects from a moving 

sonar platform [3].  First, the motion of the sonar platform is estimated by tracking a bright 

seafloor object, along with input from other shipboard navigational systems.  Five successive 

sonar images are aligned based on the motion information and averaged together to enhance 

contrast and reduce clutter.  An adaptive threshold, based on the mean and standard deviation of 

a local window of pixels, is applied to each pixel in the averaged image to segment it into objects 

of interest.

The first neural network (a multilayer perceptron, or MLP) operates on the preprocessed 

images selects target candidates using pre-defined geometric, statistical, and texture-based fea-

tures, which the authors selected based on previous work.  Up to 20 target candidates are tracked, 

each with a Kalman filter that looks for a matching candidate objects in the next preprocessing 

image.  When multiple candidates are found, it picks the closest one, called the “nearest neigh-

bor”  algorithm.  These tracked candidates are fed into another neural network to provide final 

tracked target detection.  The authors note that an object is more likely to be detected in the pre-

sent if it has been in the past; thus their primary innovation is to use a recurrent MLP neural net-

work, with the addition of delay lines (see figure 1), rather than a simple non-recurrent, non-

temporal MLP, as this final detection stage.

The authors trained their neural networks with data sets where human analysis of the so-

nar images was known to correspond to the real world.  The version of the algorithm using the 



recurrent neural network was shown to have superior probability of detection and false alarm 

rates compared with non recurrent networks.

Surface Watercraft method: 

Lo and Ferguson’s algorithm detects and tracks a single surface ship from a fixed sonar 

platform [4].  First, the sonar images are preprocessed by integrating over range cells at a given 

bearing to achieve a 1m range cell.  Then, the image intensity at a given range is normalized by 

the median intensity over all bearings at that range to reduce effect of beampattern sidelobes and 

increase contrast.

Target position measurement is obtained by looking for the direction of arrival of the sur-

face ship’s emitted cavitation noise.  This is done by integrating the image intensity over range 

per bearing, and looking for the bearing with the maximum energy.  Range measurements are 

only looked for at the measured target angle.  To prevent the cavitation noise present in the range 

profile from giving false target range measurements, a moving window median normalizer is 

used along the target range.  Further false detection is prevented with a geometric fading algo-
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Fig. 4. Example of a recurrent neural network.

Sometimes, temporal information can be presented to a clas-
sifier by creating large feature vectors that contain the features
in the current sample as well as features from a number of pre-
vious samples [21]. This can, however, be unwieldy and result
in networks that contain a large number of neurons and are dif-
ficult to train.

Recurrent neural networks are specifically designed to learn
and recognize sequential or time-varying patterns in data [22].
In a nonrecurrent neural network, neurons only receive their in-
puts from the outputs of neurons in lower layers. The data flows
in only one direction. A recurrent neural network is the term for
any neural network whose neurons can receive inputs from neu-
rons within the same layer or upper layers (as well as neurons in
the lower layers in most cases). In particular, feedback connec-
tions from events and neuron states in the past give certain types
of recurrent neural network the ability to learn time-varying
patterns.

There are many types of recurrent neural networks [22], [23].
For this investigation, a basic type of recurrent network is used,
which has an architecture similar to the MLP. The network
has three layers: input, hidden, and output. Like the system in
Section IV, the output layer has a single neuron. The network’s
judgment about a given object is obtained by thresholding the
value of the output neuron. However, the previous output layer
states of the network are stored for a number of time cycles and
fed back into the network as new features. If the three previous
output values are stored, then the network will be in effect using
18 features (15 static features and the three previous output
features). Because of the temporal information used by the
network, training becomes more computationally demanding.
However, the potential benefits of this type of network can
outweigh this disadvantage. Fig. 4 shows an example of a
recurrent neural network with the previous five output layer
states stored in a tapped delay line. The symbol “D” in the
tapped delay line represents a time delay of one sample.

D. Detectors Augmented With Temporal Features

Another approach to including temporal information in the
detection process is the computation of additional temporal
features. The temporal features are formed by storing the static
features for a number of consecutive images and computing
statistical quantities such as the mean, standard deviation, rate of
change, etc., of each feature over time. This is only made possible
by the presence of an object-tracking stage to ensure that time se-
quences of features from the same object can be extracted. Each
statistical measure produces another feature vector of equal size
to the vector of static features. The number of features available
quickly grows in size and a method of feature set reduction must
be used to avoid the “curse of dimensionality” [14]. In [6] and
[11], this approach was shown to improve the detection perfor-
mance; however, a number of problems remain. The temporal
features require the storage of past static features. Their compu-
tation must be done at the same time as the static features; hence,
they produce an increased computational load on the detection
system whilst it is operating. Note that a recurrent neural network
requires a larger computational load during training, but does
not put as much of a computational load on the system while it is
operating. Also, if the recurrent network is powerful enough, it
may be able to accurately model the temporal nature of the data
without the computation of temporal features.

For comparison with the proposed recurrent neural-network
approach, two other detectors that make use of temporal fea-
tures were created. In this paper, two temporal measures are
computed from each static feature. The feature vectors of an
object being tracked by a Kalman filter are added to the storage
area assigned to that object. Each feature vector consists of 15
static features. When a Kalman filter starts to track an object,
the associated storage area begins to fill with the feature vectors
extracted from that object. When the storage area contains ten
feature vectors, new feature vectors begin to displace the oldest
stored vectors. The mean and standard deviation for each of the
15 static features over time are computed using the stored fea-
ture vectors. This occurs as soon as the storage area contains fea-
ture vectors, not just when the storage area is full. The addition
of these temporal features brings the total number of features to
45. We denote this feature set the augmented feature set. Not all
of these features are guaranteed to be useful so, in this paper,
we use three different methods to reduce the set of features to
a useful size. The feature-set reduction techniques we consider
are principal component analysis [21], sequential backward se-
lection, and sequential forward selection [1]. The optimal subset
of the augmented feature set is then fed into recurrent and non-
recurrent neural networks.

VII. EXPERIMENTAL RESULTS

Each of the runs described in Section II is preprocessed
to remove clutter and segmented in the manner described in
Section III. As described in Section II, a human operator deter-
mines which segmented objects in each sequence correspond to
objects of interest and which segmented objects correspond to
clutter events or natural structures on the sea floor not of interest
to this investigation. Denote the segmented structures in the
imagery as structure examples or just examples. The segmented

Fig. 3.
Example of a recurrent neural network



rithm that subtracts out the weighted intensities of previous pings from the current processed 

image.  The first two strongest peaks are taken as range estimates.

Initial detection occurs if the range measurement peak intensity exceeds a threshold for a 

set number pings, and the angular positions of those potential target measurements are in as-

cending or descending order.  The initial target track start is short linear feature determined from 

the maximum cost function computed from the sum of every combination of peaks in a line be-

tween two adjacent target bearings.  A Kalman filter is used to maintain the target track by pro-

viding an estimate of where to look for the target in the next ping, and then gating the range and 

bearing measurements in the next ping according.

Conclusion

Three different sonar target tracking algorithms have been examined towards the end goal 

of locating surface ships from an underwater moving sonar platform.  The algorithm presented 

by Lo and Ferguson is an ideal stepping off point for further research towards this goal, perhaps 

incorporating optical flow or neural network methods to improve performance on a moving plat-

form in a wider variety of circumstances.  Should adequate performance not be achieved with 

these methods, other areas of literature to investigate include particle filtering [6-7] or radar-

oriented detection and tracking methods like those in [5] and [8].  Research in the immediate fu-

ture will implement focus on implementing a variant of Lo and Ferguson’s algorithm that com-

pensates for the motion of the sonar platform and testing it on existing data sets collected with an 

ARL:UT sonar.
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Algorithm Advantages Disadvantages

optical flow + compatibility measure robust, self-correcting computationally expensive

neural networks + Kalman filter superior detection, low false alarm, 
allows for moving platform detects static objects only

geometric fading + Kalman filter relatively simple, applies directly to 
application of interest

assumes one target with very specific 
properties


