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Abstract

As applications involving the capture of digital images become more ubiquitous — and at
the same time more ambitious — there is a driving need for digital images of higher resolutions
and quality. However, there is a limit to the spatial resolution that can be recorded by any
digital device. This may be due to optical distortions, motion blur (caused by motion of
the scene outpacing the shutter speed), under-sampling, or noise [I]. Super-resolution (SR)
image reconstruction is the process of combining several low resolution images into a single
higher resolution image. This allows the use of lower resolution (and thus lower cost) imaging
systems than could otherwise be used for a given application. Due to these obvious benefits
many SR reconstruction methods have been developed. A comparison of the performance
differences between these methods would only be valid given suitable objective measurements,

such as the application of SR images in a face recognition system.

1 Introduction

Any given set of source low resolution (LR) images only captures a finite amount of information
from a scene; the goal of SR is to extract the independent information from each image in that set
and combine the information into a single high resolution (HR) image. The LR images can come

from a variety of sources: they can be taken from different frames of a video sequence, different



still images taken from a single camera that has undergone translation or rotation, or multiple
cameras capturing a single scene. The only requirement is that each LR image must contain some
information that is unique to that image. This means that when these LR images are mapped
onto a common reference plane their samples must be subpixel shifted from samples of other
images — otherwise the images would contain only redundant information and SR reconstruction
would not be possible. Most methods in SR are strictly reconstruction based; that is, they are
based primarily on uniform and non-uniform sampling theorems and do not attempt to create any
information not found in the LR images. There are also learning SR methods that create new

information based on generative models [2][3].

2 Steps of Super-resolution

There are several major steps in super-resolution reconstruction: registration, warping, blurring,
motion cancellation, and merging the converted LR frames into a final HR image [4]. Registration
is the process of determining where sampled values of the LR image should lie on the HR image,
thus creating a point-to-point mapping to be used in warping. Warping is the process of converting
the samples of LR images, by using the relationship determined in registration, to the HR image.
This typically involves a projection from the LR image plane to the HR plane, and interpolation
of the LR sample values to the HR resolution. The images are processed to remove blur and noise.

Finally the warped, processed LR images are merged to form the HR image.

3 Methods of Super-resolution

There are a number of different algorithms developed to perform SR reconstruction. These in-
clude non-uniform interpolation, frequency domain, deterministic and stochastic regularization,

projection onto convex sets (POCS), hybrid techniques, optical flow, and other approaches [1][2][5].



3.1 Non-uniform Interpolation

The basis of non-uniform interpolation SR techniques is the non-uniform sampling theory which
allows for the reconstruction of functions from samples taken at non-uniformly distributed loca-
tions. This was developed by Clark et al. [6] and later extended to two-dimensional signals by
Kim and Bose [7]. SR image enhancement is a logical application of this new theory, but one that
requires very accurate registration between images. Early SR applications used detailed camera
placement to allow for accurate interpolation. Komatsu et al. developed a method to overcome
the limitations of insufficient registration accuracy by employing multiple digital sensors with dif-
ferent pixel sizes. This ensures that pixels of multiple images will not coincide regardless of camera
placement [8]. Non-uniform interpolation is a basic and intuitive method of super-resolution and
has relatively low computational complexity, but it assumes that the blur and noise characteristics

are identical across all LR images [1].

3.2 Frequency Domain

Tsai and Huang [9] proved that in the absence of noise or blurring it is possible to reconstruct
a HR image from multiple LR images based on the aliasing present in the LR images. This was
accomplished by relating the aliased discrete fourier transform coefficients of the LR images to
a sampled continuous fourier transform of an unknown HR image. Kim and Bose extended this
to blurred and noisy LR images, provided the noise has zero mean and the blur and noise are
identical across all LR images. This was accomplished using a recursive implementation based on

the weighted least square theory [7].

3.3 Regularization

SR image reconstruction is generally an ill posed problem. However, it can be stabilized with a

regularization procedure. Without loss of generality, we can define a model to relate LR images



with the original HR image and additive noise as:
Y, =W, X 4+n, fork=1,...,p

By assuming that registration parameters are estimated, the inverse problem can be solved by
deterministic regularization by taking proper prior information about the solution. For example,

a constrained least square (CLS) methods can be used to find z such that

p
> llye = Wiz |]* + al|Cz||?

k=1

becomes minimum. In this method a smoothness constraint is used as priori knowledge for re-
construction. Parameter «, which is known as the regularization parameter, controls the trade
off between fidelity and smoothness in the solution. In [10] an iterative regularized approach is
introduced to increase the resolution of a video sequence. A multiple input smoothing convex
functional is defined and used to obtain a globally optimal high resolution video sequence. In [I1]
the work by Hong et al. is extended to calculate an optimal regularization parameter systemat-
ically using the L-curve method. Current research is focused on simultaneous blur identification

and robust super-resolution.

3.4 Projection Onto Convex Sets

Low resolution images usually suffer from blurring caused by a sensor’s point spread function
(PSF) and additionally from aliasing caused by under-sampling. Stark and Oskoui [12] have
proposed a POCS technique that accounts for both the blurring introduced by the sensors as
well as the effects of under-sampling. In their model a low resolution image sequence is denoted
by g(mq,ma, k). It is assumed that an estimate of the high resolution image at time k = ¢, is

desired. A family of closed, convex constraint sets can be defined, one for each pixel within the



low-resolution image sequence
Cy, (m1,ma, k) = {y(ni,no, ;) : r® (my, ma, k)| < do }
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is the residual associated with an arbitrary member, vy, of the constraint set. h; combines the
effect of the blur PSF and relative motion of object and sensor. The quantity Jy is an a priori
bound reflecting the statistical confidence with which the actual image, y, is a member of the
set Cy,. (my, mo, k) This family of constraints is referred to as data consistency constraints. An
estimate of the high-resolution version of the reference image is determined iteratively starting
from some arbitrary initialization. Successive iterations are obtained by projecting the previous
estimate onto the consistency set with an amplitude constraint set that restricts the gray levels

of the estimate to the range [0, 255].

3.5 Optical Flow

Some applications can benefit from the generalization of SR techniques to support the imaging of
objects that are non-planar, non-rigid, or which are subject to self-occlusion when rotated. One
such application is SR reconstruction of facial images. Baker and Kande present optical flow as
a solution to this problem [13]. Zhao and Sawhney present a comparison of three different flow
methods: least-squares based flow, consistent flow (CONS), and bundled flow with CONS flow as
initial input. They demonstrated that it worked well when small amount of noise were present,

but that it was very sensitive to flow accuracy [2].



3.6 Generative Methods

One example of the recent work in generative methods, that is, methods that use additional
information not contained in the LR image set to restore a HR image, is the “recogstruction”
research conducted by Baker and Kanade [3]. Where most earlier papers used smooth a priori
assumptions, this technique relies on strong class based priors to provide far more information
than simple smooth priors used in existing SR algorithms. They claim significantly better results
both in subjective and root-mean-square (RMS) pixel error. However, the use of strong class
based priors means that the method will find what it is looking for even if it does not exist in the
image set. For instance, applying this method with a face priors, but to a LR scene of a grove of
trees, will yield a face like image. An open research area is how these priors will effect applications

such as face recognition that depend mainly on differences in a set of images that all fit the prior.

4 Comparison of SR Techniques

Comparisons of SR techniques have been primarily concerned with what assumptions are made
in the modeling of the SR problem. Some of these assumptions include assuming the blurring
process to be known [I] or that regions of interest among multiple frames are related through
global parametric transformations [2]. Other models take into account arbitrary sampling lattices,
a digital sensor elements physical dimensions, a non-zero aperture time, focus blurring, and more
advanced additive noise models [21]. Many times these assumptions are chosen to simplify a model
and are usually biased toward a particular method. In addition, methods that do not make these
assumptions have not demonstrated objectively that removing these assumptions yields better
SR reconstruction performance. Signal-to-noise ratio (SNR), peak signal-to noise ratio (PSNR),
RMS, mean absolute error (MAE), and mean square error (MSE) have all been used as objective
measures of SR accuracy; however, the prominent method of presenting results is clearly subjective

visual quality.
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Table 1: Result for SR techniques

5 Conclusion

As different methods of SR have been developed using models with unequal assumptions of the
underlying problem, and because the results provided have been primarily based on subjective
measurements, it is difficult to find an unbiased comparison on what SR methods are more ap-

propriate for a given task. Most papers on SR implementations provide subjective results by



comparing the SR image to a bilinear interpolated image or the source HR image from which the

LR images were created. This does not provide a clear method of comparing different implemen-

tations suitability for a desired application.

6

Future Work

We propose developing an objective measurement for comparison of SR methods. One possi-

ble objective measurement is a universal image quality measures for human vision systems and

computer vision systems. An alternative would be to use the HR images as the input to some

other image processing system, such as a face-recognition algorithm, and examine how different

SR techniques affect the recognition accuracy.
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