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Abstract 

In the emerging H.264 video coding standard, a deblocking/loop filter is required for 

improving the visual quality of the decoded frames.  These filters attempt to remove the 

artifacts introduced by the block-based operations, which are discrete cosine transform 

and motion compensation prediction.  Although the deblocking filter performs well in 

improving the subjective and objective quality of output video frames, they are usually 

computationally intensive.  Among the deblocking algorithms proposed, Adaptive 

Deblocking Filter is regarded as the least computationally complex one because only 

addition, shift and comparison operations are involved.  In this paper, adaptive 

deblocking filter was analyzed and found that more than 90% of the computation 

resources were spent on computing the edge strengths.  In this paper, a scheme 

exploiting the similarity of edge strengths among adjacent normals is proposed and 

implemented.  The simulation results show that quality measured in both of 

signal-to-noise-ratio(SNR) and universal quality index(UQI) close to the original 

algorithm can be achieved with almost 50% of total computation reduced. 



 1

1 Introduction 

 
Fig. 1 Block diagram of H.264 decoder 

H.264 recommendation is an emerging video coding standard drafted for very low 

bit rate video communication applications such as video conferencing on mobile 

phones.  Unlike its predecessor, H.263, a deblocking filter process is required for 

improving the visual quality of the decoded frames [1].  Each video frame is divided 

into 16x16 pixels blocks called macroblocks.  The deblocking filter is applied to all the 

edges of 4-by-4 pixel blocks in each macroblock except the edges on the boundary of a 

frame or a slice.  For each block, vertical edges are filtered from left to right first, and 

then horizontal edges are filtered from top to bottom.  The decoding process is repeated 

for all the macroblocks in a frame.   

A major challenge in designing blocking artifact detection is the detection of true 

edges in an image.  Blindly applying a lowpass filter would remove most of the block 

artifacts, but blurs the image as well.   

According to an analysis of run-time profiles of decoder sub-functions reported in 

[2], this deblocking filter process is the most computationally intensive part that 
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consumed as much as one-third of computational resources of the decoder. 

The algorithms proposed so far are based on complex mathematical derivations to 

identify and remove the block artifacts.  Although significant improvement in 

subjective and objective quality can be achieved with them, their computation and 

implementation complexity is so high that it prohibits them from being adopted directly 

in a real time application such as H.264 decoder in a cost effective manner.   

2 Key Algorithms Proposed 

Among the various algorithms proposed, there are 3 key classes of algorithms 

which based on projection on convex sets (POCS) [4][5], weighted sum of pixels across 

the block boundaries[6], and adaptively applying different filters[3]. 

The POCS-based algorithms originate from the image restoration algorithm 

proposed in [5].  It was proposed the first time in [4] to apply to deblocking of images.  

Two sets of constraints are imposed on an image to restore it from its corrupted version.  

After defining the transformations between the constraints, the algorithm starts in an 

arbitrary point in one of the sets, and projects iteratively among them until convergence. 

The iterative nature of this class of algorithms prohibits it from applying on a real-time 

system because the time to convergence is unbounded.  Moreover, the projections 

involve filtering of the picture and transformation to frequency domain, which take 

unacceptably large amount of computation resources. 
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In the weighted sum of pixels algorithms, the value of each pixel in the picture is 

recomputed with a weighted sum of itself and the other pixel values which are 

symmetrically aligned with respect to block boundaries.  In [6], the authors proposed a 

scheme of including 3 other pixels which are taken from the block above, to the left and 

the block above the left block.  The weights are determined empirically and can either 

be linear or quadratic.  This algorithm is essentially performing a filtering operation on 

every pixel in a picture.  It is expected that a very high performance platform would be 

required to implement this algorithm in a real-time application. 

Among the three key classes of algorithms, adaptive filtering, which will be 

discussed in detail in Section 3, is regarded as the one with lowest computation 

complexity because only addition, shift and comparison operations are used. 

3 Adaptive Deblocking Filter 

The deblocking process can be separated into two stages.  In the first stage, the 

edges are classified into different edge strengths according to the pixel values along the 

normals to the edges.  In the second stage, different filtering schemes are applied 

according to the strengths obtained in stage one.  In [3], the edges are classified into 3 

types to which no filter, weak 3-tap filter and strong 5-tap filter are applied.  The 

algorithm is adaptive because the thresholds for edge classification are based on the 

quantization parameters included in the relevant blocks.  An edge will only be filtered if 
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the difference between the pixel values along the normal to the edge, but not across the 

edge, is smaller than the threshold.  For high detail blocks on the side of edges, the 

differences are usually larger and strong filtering is seldom applied to preserve the 

details.  As the threshold increases with the quantization parameters, the edges across 

the high detail blocks will be filtered eventually because a high coding error is assumed 

for large quantization parameters. 

Since the edges are classified before processing, strong filtering can be replaced 

by weak filtering or even skipped.  Also the filtering is not applied to every pixel but 

only to those across the edges.  A significant amount of computation can be saved 

through the classification.  In view of its relatively lower computational complexity, 

this is a good starting point to explore for further reduction in amount of computation. 

4 Adaptive Deblocking Filter Analysis 

The exploration started with an analysis on the distribution of computation 

resources spent on each stage.  JM 9.3[8], which is an H.264 reference codec, was 

instrumented to gather statistics on the operations performed by each stage of the 

deblocking filter.  Since H.264 was proposed for low bit rate video communication, the 

analysis was limited to encoding of video sequences into bit streams of 4kbps, 8kbps, 

16kbps and 32kbps. Six QCIF format video sequences, including Akiyo, Carphone, 

Coastguard, Foreman, Mobile and Salesman, were encoded.  QCIF format sequences 
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were chosen because they fit in the screens of most of the video phones nowadays.  The 

analysis results are reported in average number of “operations” spent on each stage as 

shown in Table 1.  As addition, shift and comparison are similar in complexity, they are 

tallied under a common term “operations”.  Though averages are reported, the 

distribution is still reflected accurately because the percentage of operations spent on 

edge strength computation only differ by less than 3% among different encoding bit 

rates. 

Table 1 Analysis result on distribution of operations in adaptive deblocking filter 
Sequence Average no. of 

operations spent on 
edge strength 
computation 

Average no. of 
operations spent on 
edge filtering 

Percentage of 
operations spent 
on edge strength 
computation 

Akiyo 30806000 763106 97.58 
Carphone 30189536 2226984 93.13 
Coastguard 29931530 2284007 92.91 
Foreman 30459125 2012419 93.80 
Mobile 29472854 2826595 91.25 
Salesman 30613028 1107708 96.51 

The analysis results show that more than 90% of the total computation resources 

were spent on edge strength computation.  Obviously, we should focus on optimizing 

the edge strength computation algorithm for a significant reduction in computation. 

5 The Heuristic 

 
Fig. 2 Proposed edge strength computation  scheme 

Overall strength of an edge is computed from the edge strengths of 16 normals 
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across the edge.  In regions where adjacent pixels are highly correlated, such as smooth 

surfaces, adjacent normals on an edge may result into similar edge strengths.  Instead of 

computing the edge strength for every normal, some of the edge strength computations 

may be skipped.  A possible scheme is illustrated in Fig. 2.  While the edge strengths of 

the normals shown as dash lines are computed, the edge strengths of the normals shown 

as solid lines are skipped and taken directly from the edge strength of the normals left to 

them.  This new scheme was implemented in JM 9.3, and simulation results obtained 

are discussed in the following section. 

6 Results 

Table 2 Simulation result with optimized algorithm 
Sequence Average no. of 

operations 
spent on edge 
strength 
computation 

Average no. 
of operations 
spent on edge 
filtering 

Percentage 
of 
operations 
reduced 

Percentage 
difference of 
operations spent 
on edge filtering 

Akiyo 15405598 756268 48.80 -0.8961 
Carphone 15096780 2224871 46.57 -0.09483 
Coastguard 14961475 2299732 46.42 0.6885 
Foreman 15226669 2026466 46.87 0.6980 
Mobile 14724358 2859537 45.56 1.1655 
Salesman 15309228 1089931 48.30 -1.6049 

In Table 2, simulation results with the optimized algorithm are shown.  The 

percentage of operations reduced was calculated by comparing the total sum of 

operations with the corresponding total sum reported in Table 1.  The average number 

of operations spent on edge filtering between the original algorithm and the optimized 

algorithm was also compared.  A positive percentage means that more operations were 
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performed in the optimized algorithm for edge filtering, and a negative percentage 

means that less operations was done.   While more than 45% of operations were 

reduced with the optimized algorithm, the difference in number of operations spent on 

edge filtering is less than 2%.  This is desirable because either under-filtering or 

over- filtering leads to suboptimal results or unnecessary distortions. 
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Fig. 3 SNR and UQI achieved in “Foreman” encoded at 8kbps  
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Fig. 4 SNR and UQI achieved in “Coastguard” encoded at 8kbps  

The quality of the decoded frames were measured with both 

signal-to-noise-ratio(SNR) and universal quality index(UQI)[7].  Two examples are 

shown in Fig. 3 and Fig. 4.  The SNR and UQI achieved by the optimized algorithm are 

shown to be closely approximating those achieved by the original algorithm.  In frame 

56 of the Foreman sequence, the SNR and UQI dropped below the quality achieved 

without any filtering.  It was found that more bits were used to encode the previous 

frames such as frame 52.  With bit rate control, fewer bits were available when frame 56 
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is coded and so a worse quality resulted. 

7 Conclusions  

A heuristic exploiting the similarity of edge strengths between adjacent normals 

was proposed to reduce the computations on overall edge strength.  The simulation 

results with the optimized algorithm show that total number of operations on edge 

filtering is different from that of the original algorithm by less than 2%.  SNR and UQI 

achieved by the optimized algorithm were also closely approximating those achieved 

by the original algorithm.  Almost 50% of total number of operations was saved without 

significant impact on the quality of the decoded frame comparing to the original 

algorithm. 
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