
Optimizing the Deblocking Algorithm for

H.264 Decoder Implementation

Ken Kin-Hung Lam

Abstract

In the emerging H.264 video coding standard, a deblocking/loop filter is required for

improving the visual quality of the decoded frames. These filters attempt to remove the

artifacts introduced by the block-based operations, which are discrete cosine transform

and motion compensation prediction. Although the deblocking filter performs well in

improving the subjective and objective quality of output video frames, they are usually

computationally intensive. Among the deblocking algorithms proposed, Adaptive

Deblocking Filter is regarded as the least computationally complex one because only

addition, shift and comparison operations are involved. In this paper, adaptive

deblocking filter was analyzed and found that more than 90% of the computation

resources were spent on computing the edge strengths. In this paper, a scheme

exploiting the similarity of edge strengths among adjacent normals is proposed and

implemented. The simulation results show that quality measured in both of

signal-to-noise-ratio(SNR) and universal quality index(UQI) close to the original

algorithm can be achieved with almost 50% of total computation reduced.

 1

1 Introduction

Fig. 1 Block diagram of H.264 decoder

H.264 recommendation is an emerging video coding standard drafted for very low

bit rate video communication applications such as video conferencing on mobile

phones. Unlike its predecessor, H.263, a deblocking filter process is required for

improving the visual quality of the decoded frames [1]. Each video frame is divided

into 16x16 pixels blocks called macroblocks. The deblocking filter is applied to all the

edges of 4-by-4 pixel blocks in each macroblock except the edges on the boundary of a

frame or a slice. For each block, vertical edges are filtered from left to right first, and

then horizontal edges are filtered from top to bottom. The decoding process is repeated

for all the macroblocks in a frame.

A major challenge in designing blocking artifact detection is the detection of true

edges in an image. Blindly applying a lowpass filter would remove most of the block

artifacts, but blurs the image as well.

According to an analysis of run-time profiles of decoder sub-functions reported in

[2], this deblocking filter process is the most computationally intensive part that

 2

consumed as much as one-third of computational resources of the decoder.

The algorithms proposed so far are based on complex mathematical derivations to

identify and remove the block artifacts. Although significant improvement in

subjective and objective quality can be achieved with them, their computation and

implementation complexity is so high that it prohibits them from being adopted directly

in a real time application such as H.264 decoder in a cost effective manner.

2 Key Algorithms Proposed

Among the various algorithms proposed, there are 3 key classes of algorithms

which based on projection on convex sets (POCS) [4][5], weighted sum of pixels across

the block boundaries[6], and adaptively applying different filters[3].

The POCS-based algorithms originate from the image restoration algorithm

proposed in [5]. It was proposed the first time in [4] to apply to deblocking of images.

Two sets of constraints are imposed on an image to restore it from its corrupted version.

After defining the transformations between the constraints, the algorithm starts in an

arbitrary point in one of the sets, and projects iteratively among them until convergence.

The iterative nature of this class of algorithms prohibits it from applying on a real-time

system because the time to convergence is unbounded. Moreover, the projections

involve filtering of the picture and transformation to frequency domain, which take

unacceptably large amount of computation resources.

 3

In the weighted sum of pixels algorithms, the value of each pixel in the picture is

recomputed with a weighted sum of itself and the other pixel values which are

symmetrically aligned with respect to block boundaries. In [6], the authors proposed a

scheme of including 3 other pixels which are taken from the block above, to the left and

the block above the left block. The weights are determined empirically and can either

be linear or quadratic. This algorithm is essentially performing a filtering operation on

every pixel in a picture. It is expected that a very high performance platform would be

required to implement this algorithm in a real-time application.

Among the three key classes of algorithms, adaptive filtering, which will be

discussed in detail in Section 3, is regarded as the one with lowest computation

complexity because only addition, shift and comparison operations are used.

3 Adaptive Deblocking Filter

The deblocking process can be separated into two stages. In the first stage, the

edges are classified into different edge strengths according to the pixel values along the

normals to the edges. In the second stage, different filtering schemes are applied

according to the strengths obtained in stage one. In [3], the edges are classified into 3

types to which no filter, weak 3-tap filter and strong 5-tap filter are applied. The

algorithm is adaptive because the thresholds for edge classification are based on the

quantization parameters included in the relevant blocks. An edge will only be filtered if

 4

the difference between the pixel values along the normal to the edge, but not across the

edge, is smaller than the threshold. For high detail blocks on the side of edges, the

differences are usually larger and strong filtering is seldom applied to preserve the

details. As the threshold increases with the quantization parameters, the edges across

the high detail blocks will be filtered eventually because a high coding error is assumed

for large quantization parameters.

Since the edges are classified before processing, strong filtering can be replaced

by weak filtering or even skipped. Also the filtering is not applied to every pixel but

only to those across the edges. A significant amount of computation can be saved

through the classification. In view of its relatively lower computational complexity,

this is a good starting point to explore for further reduction in amount of computation.

4 Adaptive Deblocking Filter Analysis

The exploration started with an analysis on the distribution of computation

resources spent on each stage. JM 9.3[8], which is an H.264 reference codec, was

instrumented to gather statistics on the operations performed by each stage of the

deblocking filter. Since H.264 was proposed for low bit rate video communication, the

analysis was limited to encoding of video sequences into bit streams of 4kbps, 8kbps,

16kbps and 32kbps. Six QCIF format video sequences, including Akiyo, Carphone,

Coastguard, Foreman, Mobile and Salesman, were encoded. QCIF format sequences

 5

were chosen because they fit in the screens of most of the video phones nowadays. The

analysis results are reported in average number of “operations” spent on each stage as

shown in Table 1. As addition, shift and comparison are similar in complexity, they are

tallied under a common term “operations”. Though averages are reported, the

distribution is still reflected accurately because the percentage of operations spent on

edge strength computation only differ by less than 3% among different encoding bit

rates.

Table 1 Analysis result on distribution of operations in adaptive deblocking filter
Sequence Average no. of

operations spent on
edge strength
computation

Average no. of
operations spent on
edge filtering

Percentage of
operations spent
on edge strength
computation

Akiyo 30806000 763106 97.58
Carphone 30189536 2226984 93.13
Coastguard 29931530 2284007 92.91
Foreman 30459125 2012419 93.80
Mobile 29472854 2826595 91.25
Salesman 30613028 1107708 96.51

The analysis results show that more than 90% of the total computation resources

were spent on edge strength computation. Obviously, we should focus on optimizing

the edge strength computation algorithm for a significant reduction in computation.

5 The Heuristic

Fig. 2 Proposed edge strength computation scheme

Overall strength of an edge is computed from the edge strengths of 16 normals

 6

across the edge. In regions where adjacent pixels are highly correlated, such as smooth

surfaces, adjacent normals on an edge may result into similar edge strengths. Instead of

computing the edge strength for every normal, some of the edge strength computations

may be skipped. A possible scheme is illustrated in Fig. 2. While the edge strengths of

the normals shown as dash lines are computed, the edge strengths of the normals shown

as solid lines are skipped and taken directly from the edge strength of the normals left to

them. This new scheme was implemented in JM 9.3, and simulation results obtained

are discussed in the following section.

6 Results

Table 2 Simulation result with optimized algorithm
Sequence Average no. of

operations
spent on edge
strength
computation

Average no.
of operations
spent on edge
filtering

Percentage
of
operations
reduced

Percentage
difference of
operations spent
on edge filtering

Akiyo 15405598 756268 48.80 -0.8961
Carphone 15096780 2224871 46.57 -0.09483
Coastguard 14961475 2299732 46.42 0.6885
Foreman 15226669 2026466 46.87 0.6980
Mobile 14724358 2859537 45.56 1.1655
Salesman 15309228 1089931 48.30 -1.6049

In Table 2, simulation results with the optimized algorithm are shown. The

percentage of operations reduced was calculated by comparing the total sum of

operations with the corresponding total sum reported in Table 1. The average number

of operations spent on edge filtering between the original algorithm and the optimized

algorithm was also compared. A positive percentage means that more operations were

 7

performed in the optimized algorithm for edge filtering, and a negative percentage

means that less operations was done. While more than 45% of operations were

reduced with the optimized algorithm, the difference in number of operations spent on

edge filtering is less than 2%. This is desirable because either under-filtering or

over- filtering leads to suboptimal results or unnecessary distortions.

24.5

25

25.5

26

26.5

27

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Frame

S
N

R
(Y

)

Original Algorithm Optimized Algorithm No Deblocking Filter

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Frame

U
Q

I

Original Algorithm Optimized Algorithm No Deblocking Filter

Fig. 3 SNR and UQI achieved in “Foreman” encoded at 8kbps

22

22.5

23

23.5

24

24.5

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Frame

SN
R(

Y)

Original Algorithm Optimized Algorithm No Deblocking Filter

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

40 4 1 4 2 43 44 45 4 6 4 7 48 49 5 0 5 1 52 53 54 55 5 6 57 58

Frame

U
Q

I

Original Algorithm Optimized Algorithm No deblocking Filter

Fig. 4 SNR and UQI achieved in “Coastguard” encoded at 8kbps

The quality of the decoded frames were measured with both

signal-to-noise-ratio(SNR) and universal quality index(UQI)[7]. Two examples are

shown in Fig. 3 and Fig. 4. The SNR and UQI achieved by the optimized algorithm are

shown to be closely approximating those achieved by the original algorithm. In frame

56 of the Foreman sequence, the SNR and UQI dropped below the quality achieved

without any filtering. It was found that more bits were used to encode the previous

frames such as frame 52. With bit rate control, fewer bits were available when frame 56

 8

is coded and so a worse quality resulted.

7 Conclusions

A heuristic exploiting the similarity of edge strengths between adjacent normals

was proposed to reduce the computations on overall edge strength. The simulation

results with the optimized algorithm show that total number of operations on edge

filtering is different from that of the original algorithm by less than 2%. SNR and UQI

achieved by the optimized algorithm were also closely approximating those achieved

by the original algorithm. Almost 50% of total number of operations was saved without

significant impact on the quality of the decoded frame comparing to the original

algorithm.

8 References

[1] Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification

(ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC), Joint Video Team (JVT), Doc. JVT-G050, Mar. 2003.

[2] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AVC baseline profile decoder

complexity analysis,” IEEE Transactions on Circuits and Systems for Video Technology , vol.13, no.7, pp.

704-716, Jul. 2003.

[3] P. List, A. Joch, J. Lainema, G. Bj?ntegaard, and M. Karczewicz, “Adaptive deblocking filter,”

IEEE Transactions on Circuits and Systems for Video Technology, vol.13, no.7, pp. 614-619, Jul. 2003.

[4] A. Zakhor, “Iterative procedures for reduction of blocking effects in transform image coding,”

IEEE Transactions on Circuits and Systems for Video Technology, vol.2, no.1, pp. 91-95, Mar. 1992.

[5] D. C. Youla and H. Webb, “Image restoration by the method of convex projections: Part 1 -

Theory,” IEEE Transactions on Medical Imaging, vol.1, no.2, pp. 81-94, Oct. 1982.

[6] A. Z. Averbuch, A. Schlar, and D. L. Donoho, “Deblocking of block-transform compressed images

using weighted sums of symmetrically aligned pixels,” IEEE Transactions on Image Processing, vol.14,

no.2, pp. 200-212, Feb. 2005.

[7] Z. Wang, and A. C. Bovik, “A universal image quality index,” IEEE Signal Processing Letters,

vol.9, no.3, pp. 81-84, Mar. 2002.

[8] Joint Video Team Reference Software, Version 9.3 (JM9.3),

http://iphome.hhi.de/suehring/tml/download/

