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Abstract – Identifying acoustic sources in terms of their relative location is an important factor in 

active noise control. Traditional source localization measurements uses scalar pressure sensors 

which proved to be less accurate. Nehorai et al. proposed a different approach for source 

localization using vector natured acoustic intensity sensors. Four-dimensional (4-D) intensity based 

algorithm and  three-dimensional (3-D) velocity covariance method were used for direction-of-

arrival (DOA) estimation in free-space scenario.  Hawkes et al. extended the free-space intensity 

based algorithm to account boundary reflections for DOA estimation. Performance analysis of 

these algorithms for both free-space and reflection boundary cases have been investigated in this 

report. 

 

I.  INTRODUCTION 

For active noise control, it is important to identify acoustic sources in terms of their relative 

location and power output. Localization of acoustic sources using vector sensor models will be analyzed 

in this report. Traditionally, localization of acoustic sources in fluid (air/water) fields is done with arrays 

of distributed sensors in which output of each sensor is a scalar quantity corresponding to the acoustic 

pressure [1], [2]. The time difference of arrivals of the acoustic waves between the sensors are then used 

for source localization [3].  Nehorai et al. considered a different approach for solving this problem by 

using and array of vector sensors whose output is a vector corresponding to acoustic pressure and acoustic 

particle velocity. The main advantage of these vector sensors over traditional scalar sensors is that they 

make use of more available acoustic information. Thus vector sensors outperform scalar sensor arrays in 

accuracy of source localization [1]. 
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 Source localization is one of the main applications of the vector natured intensity and energy 

density measurements. Acoustic or sound intensity is considered one of the fundamental quantities of 

acoustic fields [5]. It can be described as the rate of energy flow at a point in space through a unit area . 

Energy density describes the energy in a unit volume of space [4]. While acoustic intensity and energy 

density are different quantities, they can both be measured using the same vector sensor [6]. In this report, 

measurements of acoustic intensity will  be referred to as measurements of acoustic pressure and particle 

velocity vectors.  

 The need of statistical distributions of acoustic quantities becomes obvious in encountering the 

difficulty of applying the modal theory [7] of acoustics at high frequencies in a large and irregular shaped 

space. In contrast to the modal theory of room acoustics, statistical properties of room acoustics is 

independent of the shape of the enclosed space [8]. In late 1960s, Waterhouse and Lubman laid the 

foundation of statistical properties of reverberant sound fields [9], [10]. Budhianto et al. derived the 

acoustic pressure and particle velocity related distributions for reverberation room environment with some 

constraints.  

In this report, direction-of-arrival (DOA) of sound sources will be estimated using vector sensors 

utilizing statistical properties of the acoustical fields. A useful quality measure for direction estimation in 

3-D space is the normalized asymptotic mean-square angular error (MSAE) between unit vector at the 

sensor pointing toward the source and its estimate. Algorithms for estimating DOA using 3-D covariance 

and 4-D intensity methods were developed [1] for free-space scenario. Intensity based algorithm has been 

extended to account boundary reflection for DOA estimation where vector sensors are free floating in the 

water column, located on the seabed, or on the ground [11]. As for this project, I am planning to analyze 

performance of different methods for both free-space and reflection boundary cases. These methods of 

source localization could be used in passive acoustic surveillance system to monitor sound sources in 

industry settings and even in battlefield or ocean without giving away the location of the probe itself. 

 Section II explains background and measurement models of the two algorithms. Section III 

summarizes the intensity based algorithm and velocity covariance method for free-space case. Section IV 
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summarizes the intensity based algorithm to account for boundary reflection. Section V includes a brief 

analysis of the different methods. Section VI includes an implementation and conclusion of the report. 

 

II. BACKGROUND 

 

A quality measure for direction-of-arrival (DOA) estimation in 3-D space is the normalized 

asymptotic mean-square angular error (MSAE) between u and its estimate û . In this report, u is a unit 

vector at the sensor pointing towards the source, that is 
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where 1θ and 2θ  are the azimuth and elevation angles of u, respectively (see  Fig. 1). Thus, 

[ ]
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πθπθ ≤∈  and . The acoustic particle velocity and pressure at position r and time t can be 

denoted as 

v(r, t) and p(r, t). Under the plane wave at the sensor assumption, it can be shown [12], [13] that 
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where 0ρ  is the ambient density and c  is the sound speed in the medium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The Orthonormal Vector Triad (u, v1, v2) [1]. 
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Phasor representation of acoustic pressure and acoustic particle velocity vectors will be used in 

the measurement model. Then, the pressure part of the model can be derived to 

                                  ( ) ( ) ( )tpetPtpy +=                                                                                                     (3) 

Similarly, the velocity part of the measurement can be derived to  

                                   ( ) ( )tPt =vy .u ( )tve+                                                                                                   (4) 

Now, combining (3) and (4), we have 
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where ( )tP  is the phasor representation of the acoustic pressure, ( )te p and ( )tve  are the noise components 

of pressure and particle velocity vectors, respectively. Now, let δ be the angular error between u and its 

estimate û , then ( )2/ˆsin2 1 uu −= −δ . Then MSAE can be defined as ( ){ }2lim δE N
N ∞→

 . For a regular model 

[14], the MSAE of any regular direction estimator is bounded from below by  

 

                                               ( ) ( ) ( ){ }212
2

CR CRBCRB.cos.NMSAE θ+θθ=                                               (6) 

where ( ) ( )21 CRB and CRB θθ are, respectively, the CRB (Cramer-Rao bound) variances of the azimuth and 

elevation angles of the source. 

 

 Now, for a single-source single-vector sensor case, the CRB can be shown as  
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It can be observed from (7) that vρ  is the signal-to-noise ratio (SNR) of the velocity measurement in each 

sensor component, while ρ  is an equivalent SNR of both the pressure and velocity-vector measurements. 

Combining both (6) and (7), a compact expression for the lower bound of the MSAE of a single-source 

single-vector sensor measurements can be derived [1] as 
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III. FREE-SPACE MEASUREMENTS 

 

In this section, two simple algorithms for estimating DOA of a single acoustic source using the 

measurements of a single vector sensor in free space will be analyzed. The following assumptions are 

made for the free-space measurements: 

• Wave is traveling in a quiescent, homogeneous, and isotropic fluid. 

• Plane wave at the sensor. 

• Band-limited spectrum signal. 

• The source signal sequence is identically distributed Gaussian process with zero-

mean. 

• The noise e ( )t  is complex Gaussian with zero mean. 

A. 4-D Intensity Based Algorithm 

 

This algorithm stems from the fact that the u is the unit vector in the opposite direction of the 

sound intensity vector. This algorithm computes 
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The statistical performance of this estimator is analyzed and the results are summarized in the following:   

• If ( ) ( ) ( )ttetP p ve,,
2

 have finite first-order moments, then uu→ˆ almost surely [1]. 

• If ( ) ( ) ( )ttetP p ve,,
2

 have finite fourth-order moments, then the MSAE (with Gaussian 

assumption omitted) of û is  

                                                                MSAE 
pv

v

ρρ
ρ+

=
1

.                                                                 (11) 

For the Gaussian case, the ratio between the MSAE of this estimator and the MSAECR is 
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Thus, it can be shown that this estimator becomes efficient if pv σσ >> , implies that pρρ ≈ [1].

B. Velocity Covariance Based Algorithm 

 

In this algorithm, only acoustic particle-velocity vector measurements and its covariance matrix 

structure is used to estimate u. Using (4), the data covariance in this case is 
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                                                           2
sσ=R  . uu

T
 + I2vσ                                                                        (13) 

where matrix R has an eigenvector u (or –u) associated with its largest eigenvalue, and I is the identity 

matrix. Now for some given unit vector u´, this algorithm computes R̂, 
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The statistical performance of this estimator is analyzed and the results [1] are summarized in the 

following:    

• If ( ) ( )ttP ve,  have finite second-order moments, then uu→ˆ almost surely. 

• ( ) ( )ttP ve,  have finite fourth-order moments, then ( )uuN −ˆ  is asymptotically normally 

distributed. 

• If ( )tve  is Gaussian and ( )tP  has finite eighth-order moment, then the estimator has an optimal 

MSAE and is given by  

                                            MSAE = MSAECR = ;
21 −− + ρρ    vρρ =                                               (15) 

where 22
ˆ vsv σσρ =  [1]. 

 

IV. REFLECTION BOUNDARY MEASUREMENTS 

 

Acoustic Vector Sensor (AVS) located on the ground or seabed needs to account for boundary 

characteristics (reflection coefficient). Underwater and airborne acoustic sources can be localized in 3-D 

space using these freely drifting, moored, or ground based AVS [11]. Some of the fundamental 

assumptions for reflection boundary measurements are as follows: 

• A point source radiating spherically symmetric waves and has a simple point image with 

(complex) amplitude R , relative to the source. 

• The three velocity components are aligned with the coordinates of the AVS or that the orientation 

of the AVS is known. 

 

Although the intensity based algorithm is used to estimate DOA, the 3-D intensity vector is not 

parallel to u. Therefore, the exact same method used for free space case cannot be used in this case to find 

the elevation angle of the source. The measurement of  a single AVS can be written as 

              y(t) = hp(t) + e(t)              for t   = 1, 2,…….., N                                                                        (16) 

where h is the sensor’s steering vector and is defined [11] as  



 7

                                                        h  = 
( )
( )

( ) 

















+

+

+

sinψR-1      

R

R

R        

ψφ
ψφ

cossin1

coscos)1

1

 .                                                                  (17) 

 whereφ  and ψ are the azimuth and elevation angle of the source, respectively. Therefore, the reflection 

coefficient can derived [11] as  
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Based on the horizontal component of acoustic intensity, the azimuth of the source can be estimated from 
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Since the magnitude of the horizontal component of acoustic intensity depends on the elevation 

angle ψ , so will the accuracy of hû . With proper modification, the analysis of the azimuthal estimator 

can be used to show that the asymptotic 
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where 22 /σσρ s=  is the signal-to noise ratio (SNR). Using, the vertical component of the acoustic 

intensity, the elevation angle for the ground and seabed case can be estimated as
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There is no known expression for the MSAE∝ of both azimuth and elevation angle estimators in 

the ground and seabed scenarios. However, under the assumption of Gaussian signals and noise, it can be 

shown [11] that 
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 V. ANALYSIS OF DIFFERENT METHODS 

For the free-space case, algorithms discussed in this report are suitable for real-time applications 

and can be developed in the time domain. They can give a direction estimate instantly, i.e. with one time 

sample and simple to implement. These two algorithms are equally applicable to sources of various types, 

including wide-band and non-Gaussian. The MSAE of the intensity based algorithm is nearly optimal and 

that of the covariance method is optimal in the Gaussian noise case.  In general, computation of MSAE in 

reflection boundary case is more difficult than that of the free-space case because of the inclusion of the 

boundary characteristics . The intensity based algorithm used to estimate DOA requires that both azimuth 

and elevation angle be calculated separately. The lower bound of MSAE is a function of the SNR ρ  and 

the elevation angleψ  while in the free-space case MSAEb is just a function of the SNR [11]. In both free-

space and boundary reflection cases, these algorithms do not depend on time delays and therefore do not 

require data synchronization and localization calibration between different sensor components [3].  

 

 

VI. IMPLEMENTATION AND CONCLUSIONS 

In this project, I am planning to simulate numerical examples of the intensity based algorithm and 

velocity covariance method for the free-space case. Intensity based algorithm for reflection boundary 

(ground) case will also be simulated and then be compared with the free-space case. I will contact authors 

of the relevant papers  ([11], [2], [3]) to acquire experimental data for the simulation. The MATLAB 

Signal Processing toolbox would be used to perform necessary simulations. If time permits, use of 

velocity vector covariance method in DOA estimation for reflection boundary case will also be 

investigated. It can be noted that DOA estimation in reflection boundary case gets complicated if acoustic 

waves hits the sensors after reflecting from different boundaries which may not have same characteristics. 

This could be an area of interest for researchers involved in acoustic source localization.   
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