Measurements of acoustic velocity and pressure vectors in source localization using acoustic intensity sensor

Literature Survey Presentation
Khalid Miah
MD-DSP
03/09/05

INIRODUCTION

- Estimation of DOA (direction of arrival) of a single source using vector natured Acoustic intensity measurements
- MSAE (Mean Square Angular Error)
- Free Space and Reflecting boundary case
- Single source Acoustic Vector sensor

Statistical Distributions of Fundamental Acoustic Quantities (Pressure/Particle velocity/Intensity)

- Statistical Distributions of acoustic quantities are independent of the shape of the room boundaries and arrangements [Budhianto \& Hixson, 1996]
- Traditional Acoustic intensity measurements using scalar sensors is ineffective in terms of source localization

Single-Source Single Vector sensor measurements for DOA estimation in Free Space

- 4-D (pressure + 3-D particle velocity) Intensity Based Algorithm [Nehorai \& Paldi, 1994]
- Key Assumptions: Plane wave at the sensor, Band limited Signal Spectrum
$-\operatorname{MSAE}=1+\rho / \rho_{v} \rho_{\mathrm{p}}$ where $\rho_{\mathrm{v}}=\sigma_{\mathrm{s}}{ }^{2} / \sigma_{\mathrm{v}}^{2}$ and $\rho_{\mathrm{p}}=\sigma_{\mathrm{s}}{ }^{2} / \sigma_{\mathrm{p}}^{2}$
- MSAE is nearly optimal
- 3-D Velocity-Covariance-Based Algorithm
- Use Covariance matrix to estimate u
- MSAE $==\rho^{-1}+\rho^{-2}$ where $\rho=\rho_{v} \quad$ [Nehorai \& Paldi, 1993]
- MSAE is optimal in Gaussian noise case

Measurements for DOA estimation using Intensity based Algorithm in Reflecting boundary case

- Key assumptions: Single bandlimited acoustic source radiating bandlimited spherical waves (different from free space case)
- The image Source is obtained by reflecting the original source in boundary (which adds Reflection Coefficient in the calculations)
- MSAE is calculated under the assumption that both signal and noise has Gaussian distributions
- MSAE is a function of $\operatorname{SNR} \rho$ and the elevation angle ψ
[Hawkes \& Nehorai, 2003]

