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Abstract 

 
Sound localization of the auditory system is useful in the industrial and military 

applications such as game, sonar, sound quality measurement. Two main key features 
that the auditory system utilizes for sound source localization are interaural intensity 
differences (IID’s) and interaural time differences (ITD’s). Both become the cues for the 
estimation of the elevation and azimuth of the sound source. In this study, head related 
transfer function (HRTF) was used for the outer ear model and gammatone filter bank 
model for the cochlear. IID and ITD were extracted by subtracting and cross correlating 
the outputs from the both side cochlea. The elevation and azimuth were then estimated by 
a neural network using IID’s and ITD’s. The neural network complemented by 
evolutionary computation was proposed, and still under testing and revision.



 
Introduction 

Identifying the location of an object generating an acoustic signal of the auditory 

system has several significant applications in the information processing systems. The 

object detection and its localization in the sonar application is crucial in the military 

applications, and the identification of the speaker location can provide a useful cue to 

improve signal noise ratio (SNR) in hearing aid and microphone array applications. Also, 

the sound localization capability can equip current game industry with more vivid 3-D 

virtual reality. At the same time, sound localization of the auditory system, as a primary 

feature detector, can provide insight into the temporal and spatial resolution of the 

auditory system, and can be applied as a basic block to building more complex cognitive 

function of the brain such as speech and music perception. 

 

Background 

The auditory system extracts several cues from the neural representation of stimuli 

which are passed along the auditory signal pathway. The head, shoulder, upper body, and 

pinna give the transformed characteristics of the stimuli, and the middle ear causes 

filtering and amplification of the input. The signal arrived at the inner ear is decomposed 

into its frequency components by the hair cells in the cochlear. Now, this frequency 

information is converted into the neural signal, called action potential, and passed to the 

primary auditory fiber. Then, the neural signal is transmitted along the auditory nerve, 

cochlear nucleus, superior olivary complex, inferior colliculus, medial geniculate body, 

and finally to the auditory cortex [1],[7]. 



From this signal transmission, sound source to the primary auditory fiber pathway 

primarily provides an appropriate transformation of the spectral/temporal characteristic of 

the stimulus, and the cross-connected pathway starting from the cochlear neucleus to 

auditory cortex processes that signal to extract the source location information, which is 

called interaural time difference (ITD) and interaural intensity difference (IID). Then, 

ITD provides the azimuth of the source location and IID gives the elevation information 

[1], [5], [6], [10]. 

The auditory pathway is conventionally thought to be composed of a cascade of sub-

systems. Depending on the decision making at the final stage, there are two categories in 

general: neural network model and probabilistic estimator model. An exemplary neural 

network model is a three-layer feedforward neural network with error backpropagation 

for the decision making block [3]. On the other hand, the probabilistic estimator models 

have either maximum likelihood estimator or nearest neighbor estimator as a 

corresponding block [2],[13],[14]. Except decision making block, both classes share 

many common sub-systems by and large although there are few variations in detail. The 

pathway from a sound source to pinna is modeled by head-related transfer function 

(HRTF). HRTF can be considered as a linear time invariant system that filters source 

signals and output the signals reaching ear drum. HRTF can vary with the frequency of a 

source signal,ω, and the source location containing azimuth θ, elevation φ, and range γ. 

For the convenience, range variable was ignored in this study and HRTF is represented 

by ),,( φθϖH in frequency domain or ),,( φθth in time domain [2].  

The cochlear function is usually modeled by filter bank which is made of a set of 

constant-Q band pass filter, half wave rectifiers, and post filtering parts. The function of 



the basilar membrane, the inner hair cell transduction, and neural adaptation are modeled 

by those components, respectively [4]. The outputs of the cochlear model are neural 

signals on the auditory nerve which contain IID and ITD information. 

 

Experimental Setup 

i) HRTF’s 

The HRTF’s by a KEMAR dummy head microphone measurement which is freely 

available on the internet was used [16]. The impulse response of the system was 

generated by using maximum length (ML) pseudo-random binary sequences at sampling 

frequency 44.1 kHz. It contains total 710 points source locations which range over 

elevations from -40° to +90° with 10° sampling of elevation and have 56, 60, 72, 72, 72, 

72, 72, 60, 56, 45, 36, 24, 12, and  1 azimuth sampling points on each elevation. The 

range of source location is set 1.4m, and the length of HRTF is 512 sample points which 

correspond to 11.61msec time interval. When we assume normal head radius 9cm and 

340m/sec sound speed, the maximum ITD is about 690usec, and 11.61msec period is 

enough long to accommodate ITD’s. To reduce computational complexity, the 9 out of 

710 locations were first tested to check the functionality of the proposed system. 

ii) The Cochlear Model 

The ear model package by Laboratory of Acoustics at Helsinki University of 

Technology was downloaded and modified for this model [15]. The directional filtered 

signal by pinna, HRTF, is scaled to 60db SPL and then transmitted through the ear canal 

to the middle ear. The transmission is modeled by filtering the scaled HRTF using the 

maximum audible field (MAF) threshold. Next, the cochlear function was modeled by the 



consecutive action of gammatone filter bank, half wave rectifier and post processing [4], 

[15]. Overall block diagram is Fig.1.  
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Fig.1. Ear model Block diagram
e outcome of the model is frequency-time representation of the auditory nerve 

. 64 channels of filter bank and 512 points sampling data give a 64 by 512 

ncy-time pattern data for each location which is used as an input to localization 

.  

) Localization System 

calization system first extracts IID and ITD from the frequency-time pattern data 

vious stage (Fig.2). A simple subtraction of the left ear frequency-time pattern from 

ht frequency-time pattern gives IID, and it contains spectral features on each 

ion and partial ITD information in its pattern. ITD information was extract from the 

correlation of left and right HRTF data directly instead of using frequency-time 

n for better estimate of azimuth. 
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F  
ig.2. IID’s and ITD Extraction
Decision making block is a neural network complemented by evolutionary 

putation. A three-layer feedforward neural network with backpropagation was 

lemented and used. To input 64 channel data to the network, 64 input units were used 

 64 hidden units and 4 output units as first trial for 9 location data. Among 64x512 

 in a frequency-time pattern, 64x32 data was selected to reduce the input data size to 

 computational complexity. This corresponds to 1/32 down sampling in time domain. 

n, 9 location data were concatenated into 64x288 size data, and it is presented to the 

al network input. With given input, the backpropagation network was test at several 

ing rates, momentum, and maximum square error values. A neuroevolution package 

eural Network Research Group as the University of Texas at Austin was tried to be 

ted to make the neural network evolved [17].  

erimental Results 

Disappointedly, although more simplified model and reduced data set was used, the 

em couldn’t be finished. HRTF data and frequency-time pattern were obtained and 

n to give necessary IID and ITD information as in Fig.3.  

 



Fig.3. Network input signal of source location at elevation 0° and azimuth 45°. (a) IID by 
subtraction of left and right side frequency-time pattern (b) ITD by cross-correlation of 
left and right HRTF’s. 

 

Network training results cannot be generated due to failure of training. Before the 

network is made to evolved, it was trained with fixed condition for test. However, with 

the given training data, the computation was too huge to produce a solution, even a local 

minimum. Just, 100 iterations with 0.01 MSE took more than 3 hour simulation and 

could not converge to a local minimum.  

 

Discussion and Future Work 

If this training is deployed on the 150 initial populations, the linear estimation of 

simulation would be 3x150 hours for nothing, which should be avoided. Thus, the 

reduction of input data dimension seems to be critical. If the input data dimension is 

reduced, it causes smaller input unit size and corresponding hidden unit size. Then, the 

reduced system may relieve the system of huge amount of computation. Probably, a data 

clustering method to the input data would help to reduce the input data dimension. At the 

same time, more simple fitness evaluation without backpropagation network may be 



tried. Once this stage is cleared satisfactorily, the evolution of the network from initial 

population will be pursued. 
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