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Abstract 

 
The auditory system can be considered as an audio signal processing system with two 

input sensors. With this small number of input information, it shows remarkable 
performance in sound localization capability. Previously, several models were proposed 
to explain the sound localization capability of the auditory system. Most attempts can be 
categorized into two classes: neural network model and probabilistic estimator model, 
and they have their own merit and demerit depending on the algorithm. In this project, a 
neural network model expanded by evolutionary computation will be investigated to give 
better performance over the conventional models. 



 
Introduction 

Identifying the location of an object generating an acoustic signal of the auditory 

system has several significant respects in some information processing systems. The 

object detection and its localization in the sonar application is crucial in the military 

situation, and the identification of the speaker location can provide a useful cue to 

improve signal noise ratio (SNR) in hearing aid and microphone array applications. Also, 

the sound localization capability can gear current game industry with more vivid 3-D 

virtual reality. At the same time, sound localization of the auditory system, as a primary 

feature detector, can deliver a clue to the temporal and spatial resolution of the auditory 

system, and can be applied as a basic block to building more complex cognitive function 

of the brain like speech and music perception. 

 

Sound Localization of the Auditory System 

The auditory system extracts several cues from the neural representation of stimuli 

which are passed along the auditory signal pathway. The head, shoulder, upper body, and 

pinna give the transformed characteristics of the stimuli, and the middle ear causes 

filtering and amplification of the input. The signal arrived at the inner ear is decomposed 

into its frequency components by the hair cells in the cochlear. Now, this frequency 

information is converted into the neural signal, called action potential, and passed to the 

primary auditory fiber. Then, the neural signal is transmitted along the auditory nerve, 

cochlear nucleus, superior olivary complex, inferior colliculus, medial geniculate body, 

and finally to the auditory cortex [1],[6]. 



From this signal transmission, sound source to the primary auditory fiber pathway 

primarily provides an appropriate transformation of the spectral/temporal characteristic of 

the stimulus, and the cross-connected pathway starting from the cochlear neucleus to 

auditory cortex processes that signal to extract the source location information, which is 

called interaural time difference (ITD) and interaural intensity difference (IID). Then, 

ITD provides the azimuth of the source location and IID gives the elevation information 

[1], [4], [5], [9]. 

 

Previous  Methods 

The auditory pathway is conventionally thought to be composed of a cascade of sub-

systems. Depending on the decision making at the final stage, there are two categories in 

general: neural network model and probabilistic estimator model. 

A three-layer feedforward neural network model of sound localization in cat was 

proposed [3]. It modeled the pathway from a sound source to pinna by a transfer function 

which is so called head-related transfer function (HRTF) and the cochlear by simply 

dividing the input into 128 frequency components. Those 128 frequencies were input to 

the three-layer feedforward neural network which consisted of 128 input units, 4 to10 

hidden units, and 11 by 17 two dimensional output units. The relationship between the 

layers was described by Eq.(1) and Fig.1. The input data characteristics were represented 

in the weight coefficients, jkw , by training network with a training dataset. 
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The broadband input noise 

location in the training data set ranges 

over azimuths between -30° and +30° 

and elevations from -30° to +90° with 

15° and 7.5° sampling of azimuth and 

elevation, respectively. The network 

training was done by adjusting the weight coefficients, jkw , to reduce the error between 

the desired outcome, { })(tdk  and actual network output, { })(tNk , so called gradient 

descent method (2).  

(2)   [ ]∑∑
= =

−=
T

t

L

k
kk tdtN

T
Error

1 1

2)()(1  

where T is the number of patterns in the training set and L is the number of output units. 

This model focused on the importance of spectral cues in monaural and binaural input 

presentation rather than ITD, and finally modeled a auditory space map in the superior 

colliculus. It showed that the best performance in elevation estimation occurred with 

6.30° average error in binaural input and the notches presented in the 5k to 18kHz region 

of the input were crucial to sound localization. Furthermore, the responses of neurons in 

the hidden unit and output units were studied in the same way that was for the 

neurophysiological characterization of auditory neurons, and the response maps of some 

neurons in the network corresponded to those of the neurons in the dorsal cochlear 

nucleus.  

Related to the previous results, Zakarauskas developed a mathematical model in the 

monaural localization [10]. He proposed two operators, ),( φθnD′  and ),( φθnC ′ :the first 
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Fig.1. Structure of one model neuron with 
input { }ix , threshold kθ , activation 
function f( ), and output ky . 



and second partial derivative of the HRTF with respect to the two neighboring 

frequencies nf  and 1+nf  respectively, which seemed to be necessary for the neuron 

playing a role in sound localization. The simulation of the proposed operators was 

performed on the input data which were sampled 10° both azimuth and elevation. By 

solving the minimization problem Eq.(3), the elevations for two operators were estimated, 

and it produced the better outcome for the second derivative case, where the hit rate was 

566 out of 614 test data and the average error ranged over elevations from 0.3° to 28° 

depending on the source spectra. 
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Where nD  and nC  are the first and second finite differences between the observed 

intensity levels at two neighboring frequencies nf  and 1+nf . 

On the other hand, the probabilistic estimator models share many common sub-

systems by and large although there are few variations in detail. An example of such 

system is show in Fig.2 in block diagram. The pathway from the sound source to the 

pinna is modeled by HRTF, and the inner ear is described by various cochlear models 

[2],[12],[13].  The superior olivary complex was approximated as a cross-correlator and 

subtractor, and the higher level up to the auditory cortex was modeled as probabilistic 

decision making such as maximum-likelihood estimator (MLE) [2], [13], [7]. 

 

 



Fig.2. A typical sound localization system, modified from [2] 

According to the conventional auditory pathway model, ITD is approximated well as 

a cross-correlation of cochlear outputs of both ears. IID, which is obtained from the 

difference between the signal spectra in both ears, is not as easy to model. For example, 

the IID of the sound source located at the median plane (azimuth =0 case) is zero, and it 

can give no information about the source elevation [2]. A system combining the monaural 

and binaural cues was shown to give improved results [13], [11]. The comparison of the 

models is presented in the Table 1. 

 

Evolutionary Computation 

    In general, backpropagation neural network has several drawbacks such as the local 

minimum, generalization, and the fixed network architecture. Neuroevolutionary 

computation which evolves the artificial neural network by genetic algorithms can be a 

possible solution to such problems. Among several mothods, NeuroEvolution of 

Augmenting Topologies (NEAT) by Stanley has some useful features [8]. It starts from 

the minimal structure, and continue to add its nodes and connections incrementally on 



searching the optimal solution by examining the fitness. Each genome in NEAT includes 

a list of connection genes, and each connection gene contains in/out node number, 

connection weights, status bit to show the expression of gene, and an innovation number 

which is a tag to identify the particular gene. The evolution through the mutation and 

crossover of genes is tracked by historical marking which is a sequence composed of the 

innovation number of each gene in a genome. Historical marking enables the system to 

divide the population into species according to their topological similarity, and to analyze 

its topology easier when it crossover. Then, the fitness test is done within a species first, 

and then survived genomes from each species are tested to find global optimum in the 

entire population. Thus, NEAT can provide not only a solution for the problems of 

backpropagation neural network, but also an relatively efficient computation algorithm. 

Furthermore, it can give more biologically compatible neural network structure through 

complexification. 

 

Conclusion 

   The conventional system does not reflect the plasticity of the brain as well as feedback 

from the upper level such as the feedback from the inferior colliculus to the outer hair cell 

through the cochlear nucleus. Thus, if those components can be added to the conventional 

model, improved performance is expected. The decision block in the conventional system 

will be composed of a three-layer backpropagation neural network and an evolutionary 

computation to provide plasticity and feedback in the system. The block diagram of the 

suggested system is in Fig.3. 

 



 

Fig. 3. A proposed sound localization system block diagram 
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Table 1. Comparison among various models 


