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ABSTRACT 

The Genome Project has revitalized exploration in biological research. The high throughput data 

generated by DNA microarray technology promise to enhance fundamental understanding of 

processes on the molecular level. Analysis of this data requires mathematical tools that are 

adaptable to large quantities of data, while reducing the complexity of the data to make them 

comprehensible. Recent work showed that singular value decomposition (SVD) provides such a 

framework for genome-wide expression data [1]. Alter et al. [2] showed that generalized SVD 

(GSVD) provides a framework that can distinguish the similar from the dissimilar between two 

genome-scale data sets. This report describes a mathematical framework that allows the 

comparative analysis of multiple large- scale data sets.  This framework is illustrated by relating 

three datasets containing attributes of the NCI60 human cancer cell lines. 



I. Introduction 

The Genome Project has led to the discovery of thousands of new genes, an exhilarating 

reminder that much of the natural world remains to be explored at the molecular level. The 

objective is to discover things we neither knew nor expected and to perceive relationships and 

connections among the biological elements, whether previously suspected or not. 

DNA Microarray technology [3,4] provides a straightforward and natural vehicle to monitor 

molecular biological data on a genomic scale. This high-throughput technology has generated 

large bodies of information that may enhance the fundamental understanding of life on a 

molecular level and may prove useful in perceiving elementary aspects of growth and 

development. It also enables us to explore the underlying genetic causes of many human diseases 

and thereby aid in medical diagnosis, treatment and drug design. 

The need for mathematical tools that are adaptable to large quantities of data, while reducing the 

complexity of the data to make them comprehensible is highlighted. Singular value 

decomposition is one such tool in which the mathematical variables and operations represent 

some biological reality [1]. Generalized singular value decomposition offers a comparative 

framework for two genome-scale data sets.  

Comparative analysis of two or more data sets promises to enable comprehension of the universality 

as well as the specialization of molecular biological mechanisms. This project addresses the issue of 

building a consolidated method to enable the integrative analysis of three or more data sets and 

discover relations between them. To illustrate this method, three datasets from the National Cancer 

Institute’s Developmental Therapeutics Program’s (DTP) studies on 60 human cancer cell lines, the 

NCI60, are used. These cell lines have been extensively used as experimental models of neoplastic 

disease to screen potential anticancer drugs.  Each of the datasets contains an attribute of the NCI60: 



the gene expression profiles of the NCI60 [5], the sensitivities of these cell lines to more than 70,000 

different chemical compounds including all common chemotherapeutics [6], and the proteomic 

profiling of the NCI60 using reverse phase Lysate micro arrays [7].  

II. Singular Value Decomposition (SVD)  

Singular value decomposition (SVD) [8], a linear algebra technique, is a tool that may be used to 

analyze gene expression [1]. SVD is a type of matrix factorization [9] that may be used for tasks, 

such as reducing dimensionality and determining the modes of complex dynamical systems, and has 

properties that are useful for a variety of signal processing problems and applications [8]. If A is a 

real m x n matrix, then there exist orthogonal matrices U= [u1,……, um] and V=[v1,……,vn]  such that  

UTAV = diag (d1, d2,….., dp) where p=min{m, n}   and d1≥d2 ≥…..≥dp ≥0.  

When SVD is applied to genome-wide data, the mathematical variables and operations may be 

assigned biological meaning [1]. SVD transforms expression data from the genes x arrays space 

to reduced “eigengenes” x “eigenarrays” space. 

Pattern Inference: The de-correlated eigengenes (and eigenarrays) represent independent 

biological processes (and corresponding biological states).  The process represented by an 

eigengene is inferred from its expression pattern across all the arrays, which is usually 

biologically interpretable. 

III. Generalized Singular Value Decomposition (GSVD) 

Generalized singular value decomposition (GSVD) [8,9] is a tool that provides a comparative 

mathematical framework for two genome scale datasets. It allows comparative reconstruction and 

classification of the rows and columns of both datasets [2]. 

If A1 and A2 are two real matrices of dimensions m1 x n1 and m2 x n2 , then there exist orthogonal 

matrices: U1= [u1,……,um1],V= [v1,……,vn] and U2= [u1,……,um2], V= [v1,……,vn]  such that, 

A1= U1 diag1(d1,d2,…..,dp1) V-1  and A2= U2 diag2(d1,d2,…..,dp2) V-1           ( A ) 



 where p1=min {m1,n1} , p2=min {m2,n2} and n= n1= n2. 

The one-to-one correspondence between the columns of the two matrices is at the foundation of 

the GSVD comparative framework and should be mapped out carefully. GSVD is the 

simultaneous linear transformation of the two expression data sets from m1 rows x n columns and 

m2 rows x n columns space to two reduced rowlets x columnlets spaces. In expression data, this 

would correspond to transformation two genes x arrays spaces to two reduced “genelets” x 

“arraylets” space. 

The anti-symmetric angular distance between the datasets θ=arctan (diag1/diag2) – ∏ /4, indicates 

the relative significance of genelets of the first dataset relative to those in the second in terms of  the 

ratio of the expression information captured by the genelets in the first dataset relative to that in the 

second. 

Pattern Inference: These genelets represent regulatory programs and biological processes that 

contribute to the overall expression signal in each data set. An angular distance of 0 indicates a 

genelet of equal significance in both data sets and that of +/- ∏ /4 indicate no significance in the 

second data set relative to the first. 

IV. Proposed Centroid Method 

A novel method for extending the principle of GSVD to multiple datasets where a one-to-one 

correspondence between the columns is conserved is proposed. The method also seeks to 

establish a framework for handling and correlating multiple data sets. For ease of understanding, 

consider the case of relating three datasets. The aim is to best approximate the decomposition: 

D1 ~ U1 diag1(d1,d2,…..,dp1) V-1 

                             D2 ~ U2 diag2(d1,d2,…..,dp2) V-1
                                   ( B )  

D3 ~ U3 diag3(d1,d2,…..,dp3) V-1 



IV (a) Geometric Interpretation 

If a dataset is thought of as a line, the GSVD as in (A) of two datasets gives us the matrix V-1 that 

is common to both datasets and may be thought of as the point of intersection of the lines 

represented by the two datasets. Extending this analogy to three data sets D1, D2, and D3, each of 

these data sets represents one line. Any two non-parallel lines intersect at a point. Three non-

parallel lines form a triangle. In the ideal case, the three lines are concurrent and all three vertices 

of the triangle converge to the point of concurrency, making the approximation (B) exact.  

Three points of intersection corresponding to applying GSVD on each of the 3 pairs of data sets 

are obtained. Let A, B, and C be the V-1 matrices obtained as a result of applying GSVD on {D1, 

D2}, {D2, D3} and {D3, D1} respectively. The aim of the method is to replace A, B and C with a 

matrix X that optimizes the approximation (B).  

For X to best approximate A, B and C simultaneously, the Frobenius distance between the 

matrices must be minimized. The Frobenius distance between two matrices X and Y is defined as  

|| X – Y ||F = ∑ | Xij – Yij | 2. 
                          i,j 
The matrix X that minimizes || X – A ||F  + || X – B ||F + || X – C ||F must be estimated. This is 

nothing but minimizing the sum: 

       ∑  | Xij – Aij | 2 +   ∑ | Xij – Bij | 2 +    ∑  | Xij – Cij | 2 

        i,j               i,j     i,j 
As all the terms in this summation are non-negative, minimizing the above equation is equivalent 

to minimizing | X – A|2 + | X – B|2 + | X – C|2 i.e. each element in the diagonal matrix is 

minimized and this minimizes the Frobenius distance. To this effect, the equation is 

differentiated and set to 0. Note that differentiating the equation twice leads to the constant value 

6(>0), which indicates that the value obtained at X, subject to the constraint, is a minimum value 

[10]. 

 



⇒         2 | X – A| + 2 | X – B| + 2 | X – C| = 0 

⇒        6 X = 2 (A + B + C) 

⇒         X = (A + B + C)/3 

The matrix X is the centroid of the triangle formed by A, B and C. When the matrix V-1 is equal 

to X, the centroid of the triangle, the approximation (B) is optimized. The simplicity of the 

solution lies in the ease with which this method can be extended to any number of working data 

sets.  

The described method has been implemented using MATLAB v7.0.1. The data sets are first 

filtered to improve the quality of the data. Rows in the data sets with more than 20% missing 

entries are discarded. The remaining missing values are then replaced with the average value of 

that row.  The GSVD of every two pairs of data sets is computed to find their “intersection” i.e. 

the V-1 matrix.  The centroid of the three V-1 matrices is then computed.  Each data set is then 

multiplied with the inverse and the values in the diagonal matrices are calculated by normalizing 

the column vectors of the resulting matrices.  

V. Results 

The centroid method was applied to the three NCI60 data sets. Cancer cell lines corresponding to 

Melanoma, Colon, Ovarian, Leukemia, and breast tumor were used while cell lines 

corresponding to prostrate and lung cancer were discarded, owing to noisy data and inadequate 

number of samples. The RNA expression dataset records the expression of 4636 genes across 32 

tumor samples. The protein dataset had 52 antigens across 32 tumors and the drug dataset 

records the reaction of the 32 tumors to 1400 drugs. The Centroid matrix containing patterns 

shared by all three data sets is shown in figure 1.  



Figure. 1. Raster plot of the Centroid containing patterns shared by the RNA expression, Protein 
and Drug data sets with over expression (blue), no change in expression (black), and under 
expression (yellow). 
 

The expression levels of the first two patterns of this Centroid are plotted in figure 2. Some 

interesting observations can be made from these patterns. For instance, the breast cancer and 

ovarian cancer lines are clustered together in the first pattern. It is known that the same hormone 

estrogen plays an important role in both these organs, which appear to be behaving in a similar 

fashion as indicated by their RNA expression and protein profiles. This suggests that similar 

drugs may be used to treat these cancers. Analyzing all patterns of the Centroid will enable us to 

draw similar inferences. An objective measure of calculating the relative significance of each of 

the data sets (analogous to the angular distance of the GSVD method) in the centroid is under 

development.  



 

Figure. 2. Expression levels of the first two patterns of the Centroid. 
 
VI. Comparison with existing frameworks  
 
It is often very useful to collectively analyze more then two datasets. When compared to the 

existing frameworks of SVD and GSVD, the proposed centroid method overcomes the limitation 

of being restricted to a maximum of two data sets at a time. It may be very easily extended to 

allow an integrative analysis of any number of data sets as long as a one-to-one correspondence 

is conserved along the columns.  Unlike SVD and GSVD however, it is not an exact 

decomposition. It is however the best possible approximation as shown.  

VII. Conclusion 

This report puts forth a new mathematical framework for the comparative analysis of multiple 

datasets. Using this method, patterns shared by three data sets containing attributes of the NCI60 

were discovered. Future work includes attempting to address the intriguing question as to how 

similar are expression and protein profiles at the RNA and protein levels. Also, the discovered 

patterns will be further studied to identify candidate diagnostic markers for distinguishing 

between various kinds of tumors and in differential diagnosis. 
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