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ABSTRACT 

 

The Genome Project has revitalized exploration in biological research. DNA microarray technology 

allows us to probe the genome and monitor gene expression levels on a genomic scale. The high 

throughput data generated by this technology promise to enhance fundamental understanding of 

processes on the molecular level and may prove useful in medical diagnosis, treatment and drug 

design. Analysis of this data requires mathematical tools that are adaptable to large quantities of data, 

while reducing the complexity of the data to make them comprehensible. This report surveys the 

different techniques currently used to analyze microarray data. 

1. INTRODUCTION  

The Genome Project has led to the discovery of thousands of new genes, an exhilarating 

reminder that much of the natural world remains to be explored at the molecular level. The 

objective is to discover things we neither knew nor expected, and to perceive relationships and 

connections among the biological elements, whether previously suspected or not. 
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DNA Microarray technology [1,2] provides a straightforward and natural vehicle to monitor 

molecular biological data on a genomic scale. This high-throughput technology has generated 

large bodies of information that may enhance the fundamental understanding of life on a 

molecular level and may prove useful in perceiving elementary aspects of growth and 

development. It also enables us to explore the underlying genetic causes of many human diseases 

and thereby aid in medical diagnosis, treatment and drug design. 

The need for mathematical tools that are adaptable to large quantities of data, while reducing the 

complexity of the data to make them comprehensible is highlighted. A few important existing 

frameworks  that provide a description for the data, in which the mathematical variables and 

operations may represent some biological reality have been summarized in this report. 

2. BACKGROUND 

With only a few exceptions, every cell of the body contains a full set of chromosomes and identical 

genes [3]. Only a fraction of these genes are turned on however, and it is this subset that is 

"expressed" that confers unique properties to each cell type. "Gene expression" is the term used to 

describe the transcription of the information contained within the DNA, the repository of genetic 

information, into messenger RNA (mRNA) molecules that are then translated into the proteins that 

perform most of the critical functions of cells. Gene expression is a highly complex and tightly 

regulated process that allows a cell to respond dynamically both to environmental stimuli and to its 

own changing needs [4].  

Microarrays allow us to analyze the gene expression of thousands of genes simultaneously. A 

microarray consists of a small membrane or glass slide containing samples of genes arranged in a 

regular pattern. Therefore, it provides us with a complete blueprint of any organism we want to study. 

The tight connection between the function of a gene and its expression pattern make the data 

generated by these microarrays invaluable. Outlined below are some of the important frameworks for 

gene expression analysis. 
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3. SINGULAR VALUE DECOMPOSITION 

Singular value decomposition (SVD) [5], a linear algebra technique, is a  tool that may be used to 

analyze gene expression [6]. SVD is a type of matrix factorization [7] that may be used for tasks, 

such as reducing dimensionality and determining the modes of complex dynamical systems, and has 

properties that are useful for a variety of signal processing problems and applications [8].  

If A is a real m x n matrix, then there exist orthogonal matrices 

U=[u1,……,um]         and                 V=[v1,……,vn] 

such that   

UTAV = diag(d1,d2,…..,dp) 

where p=min{m,n}   and d1≥d2 ≥…..≥dp ≥0.  

SVD transforms the data from row x column space to reduced “eigenrow” x “eigenarray” space, 

where the eigenrows (or eigenarrays) are orthonormal superpositions of the rows (or columns). It 

provides a method to mathematically discover and expose latent relations and correlations within 

data. When SVD is applied to genome-wide data, the mathematical variables and operations may be 

assigned biological meaning [6]. In expression data, the rows correspond to genes and the columns 

correspond to the arrays. Expression data is transformed from the genes x arrays space to reduced 

“eigengenes” x “eigenarrays” space as indicated in figure 1ψ. 

 

Figure 1ψ . Singular Value Decomposition 
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4. GENERALIZED SINGULAR VALUE DEOMPOSITION 

Comparative analysis of two or more data sets promises to enable comprehension of the universality 

as well as the specialization of molecular biological mechanisms. To perform this comparison, we 

need mathematical tools that can distinguish the similar from the dissimilar among two or more large-

scale datasets. Generalized singular value decomposition (GSVD) [5,7] is a tool that provides a 

comparative mathematical framework for two genome scale datasets. It allows comparative 

reconstruction and classification of the rows and columns of both datasets [9]. 

If A1 and A2 are two  real matrices of dimensions m1 x n1 and m2 x n2 , then there exist orthogonal 

matrices  

U1=[u1,……,um1]                 V=[v1,……,vn] 

And 

U2=[u1,……,um2]                 V=[v1,……,vn] 

such that  

U1
TA1V = diag1(d1,d2,…..,dp1)       and      U2

TA2V = diag1(d1,d2,…..,dp1) 

where p1=min{m1,n1} , p2=min{m2,n2} and n= n1= n2. 

The one-to-one correspondence between the columns of the two matrices is at the foundation of the 

GSVD comparative framework and should be mapped out carefully. GSVD is the simultaneous linear 

transformation of the two expression data sets from  m1 rows x n columns and m2 rows x n columns 

space to two reduced rowlets x columnlets  spaces. In expression data, this would correspond to 

transformation two genes x arrays spaces to two reduced “genelets” x “arraylets” space as indicated 

in figure 2ψ. 

  

                                                
ψ In figures 1 and 2, Red indicates an increase in the expression of a gene and green indicates a decrease in the 
expression of a gene. 



 5 

 

Figure 2ψ. Generalized Singular Value Decomposition 

 
The anti-symmetric angular distance between the datasets  

θ=arctan(diag1/diag2) – ∏ /4, 

indicates the relative significance of genelets of the first dataset relative to those in the second in 

terms of  the ratio of the expression information captured by the genelets in the first dataset relative to 

that in the second. 

 

 



 6 

5. CLUSTERING ANALYSIS 

In order to infer useful biological information and determine the relationships between individual 

genes, a system of "clustering" is available that can group similarly expressed genes into sub-groups, 

and, therefore, categorize genes appropriately.  Using clustering analysis, one can identify sets of 

genes that are coordinately regulated. Information about a gene’s function can be deduced by 

identifying genes that share its expression pattern. Genes that belong to the same cluster may be 

involved in common cellular processes. Clustering may be divided into two broad categories, 

Hierarchical Clustering and Partitional Clustering. 

Hierarchical clustering [10] can be divisive or agglomerative producing nested clusters and the results 

are usually visualised by treelike dendrograms. Different similarity metrics such as Euclidean distance, 

Correlation and dot product may be used. 

Partitional clustering divides data into a (pre-) chosen number of classes.  K-means [11] that belongs to 

this class is typically used to cluster gene expression data. The drawback of this method is that choosing 

the number of clusters is difficult. Partitional clustering may be further divided into hard clustering and 

soft clustering. Hard clustering assigns a gene to exactly one cluster whereas soft clustering can assign a 

gene to several clusters. 

6. PRINCIPAL COMPONENTS ANALYSIS (PCA) 

PCA [11] is a statistical technique that has found application in identifying patterns in data of high 

dimensions. It enables us to express data in such a way, as to highlight the similarities and 

differences. PCA reduces the dimensionality of the data and so serves as a powerful tool in higher 

dimensions, where the luxury of graphical representation is not available. This makes it suitable for 

use on microarray data. 

PCA is also based on eigen-decomposition. It is the linear projection of data onto the principal 

components defined by the eigen vectors of the covariance matrix. PCA is the statistical equivalent of 

SVD. When applied to gene expression data, it generates the diagonal matrix containing the 
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eigenvalues and the  V matrix consisting of the eigengenes. It does not however generate the U 

matrix that represents the eigenarrays. 

Table 1. A Qualitative Comparison of Existent Microarray Data Analysis Techniques 

Analysis Technique 

Degree of 
Computational 

Complexity 
Approximation 

of Biology 
Visualization of 

Results 

 
Experimental 

artifacts 

 
Robustness to 

noise 
 

SVD 
 [ Alter et al, 2000] 

[6] 

 
Low 

 
Very Good 

 

 
Very Good 

Can be  
detected and 
filtered out 

 
Very Good 

 
GSVD 

[ Alter et al, 2003] 
[9] 

 
Low 

 
Very Good 

 
Very Good 

Can be  
detected and 
filtered out 

 
Very Good 

 
PCA 

[Nishimura et al, 2003] 
[12] 

 
Low 

 
Good 

 
Good 

Can be  
detected and 
filtered out 

 
Good 

 
Hard Clustering 

 
High 

 
Good 

 
Good 

Performance 
degrades 
markedly 

 
Bad 

 
Soft Clustering 

 

 
High 

 
Very Good 

 
Good 

 
Performance 

degrades  

 
Good 

 
Hierarchical 
Clustering 

[Eisen et al, 1998] 
[10] 

 
Very High 

 

 
Good 

 
Very Good 

 
Performance 

degrades  

 
Reasonable 

 
Gene Shaving 

[Hastie et al, 2000] 
[13] 

 
High 

 
Very Good 

 
Good 

 
Performance 

degrades 

 
Reasonable 

 
Plaid Models 

[Lazzeroni et al, 2002] 
[14] 

 
Very High 

 
Very Good 

 
Good 

 
Performance 

degrades 

 
Good 

 
Probabilistic 

Relational Models 
(PRM) 

[Segal et al, 2001] 
[15] 

 
Very High 

 
Very Good 

 
Good 

 
Performance 

Degrades 

 
Good 
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7 CONCLUSION 

 

This survey evaluates the various techniques currently employed to analyze microarray data and 

draws our attention to a deficiency in these methods in that they cannot be extended to collectively 

analyze more than 2 datasets. This project aims at addressing this issue by building a consolidated 

method to enable the integrative analysis of three or more data sets and discover relations between 

them. Both SVD and GSVD methods will be utilized in doing so. The National Cancer Institute’s 

Developmental Therapeutics Program (DTP) has carried out intensive studies of 60 cancer cell lines, 

the NCI60, derived from a variety of human tissues and organs. These cell lines have been 

extensively used as experimental models of neoplastic disease to screen potential anticancer drugs. 

Among the chief objectives is to relate three data sets containing attributes of the NCI60: the gene 

expression profiles of the NCI60 [16], the sensitivities of these cell lines to more than 70,000 

different chemical compounds including all common chemotherapeutics [17], and the proteomic 

profiling of the NCI60 using reverse phase lysate micro arrays [18].  

 

 As most molecular markers and targets are proteins, analyzing the protein levels for abnormalities 

may give answers to fundamental functional and pharmacological questions. This project shall 

attempt to address a question that has intrigued researchers for years: how similar are expression and 

protein profiles at the RNA and protein levels. Also, it shall aid in identifying candidate diagnostic 

markers for distinguishing between various kinds of tumors and in differential diagnosis e.g. 

determine what type of chemotherapy to give. 
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