Channel Estimation for Wired MIMO Communication Systems

Literature Survey Presentation

Daifeng Wang
Dept. of Electrical and Computer Engineering
The University of Texas at Austin
wang@ece.utexas.edu
Introduction

• **MIMO** – Multiple Input Multiple Output

![MIMO Channel Diagram]

• **Wired Communications** – Telephone, ADSL, VDSL

• **Multicarrier Modulation** – DMT, OFDM

• **Channel Estimation** –
 To estimate an unknown channel by sending a known training/pilot sequence
Data Transmission for ADSL, a wired communication system

TRANSMITTER

- Bits: 00110
- Multi-Modulation Encoder
- Mirror data and N-IFFT
- Add cyclic prefix
- P/S
- D/A + transmit filter

RECEIVER

- $N/2$ subchannels
- N real samples
- P/S
- Decoder
- Freq. domain equalizer (invert channel)
- N-FFT and remove mirrored data
- S/P
- Delete cyclic prefix
- Time domain equalizer (FIR filter)
- Receive filter + A/D

Background

Conventional ADSL equalizer structure
Key Paper I – MIMO Channel
[A.Goldsmith, 2003]

• Why MIMO? – to obtain the higher data rate
• Challenges! – Power, Bandwidth, Complexity, Capacity
• Typical MIMO Channels – Single-User MIMO, Multiuser-MIMO (Multiple-Access Channel, Broadcast Channel)

Channel Model

\[x = Hs + w \]

- \(s \) – M*1 transmitted vector
- \(H \) – N*M channel matrix
- \(x \) – N*1 received vector
- \(w \) – N*1 noise vector

MIMO with M transmitters and N receivers

3/8/2005
Key Paper II - Multicarrier Modulation

[John A.C. Bingham, 2000]

• Divide broadband channel into narrowband subchannels
 – No ISI in subchannels if constant gain in every subchannel and if ideal sampling
 – Each subchannel has different carrier

• Discrete multitone modulation
 – Based on fast Fourier transform
 – Orthogonal Frequency Division Multiplexing (OFDM)

Subchannels are 4.3 kHz wide in ADSL and VDSL
Key Paper III - Channel Estimation
* [Ye Li, 2002]

- **OFDM** – Multicarrier Modulation for MIMO
- **Training Sequence** – Obtain initial estimation for channel parameters, timing, frequency offset, etc.
- **Channel Estimation**

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplified Estimation</td>
<td>The computational complexity ↓</td>
<td>Performance degradation but negligible</td>
</tr>
<tr>
<td>[Ye Li, 2002]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Interpolation</td>
<td>MSE on Comb-type channel estimation</td>
<td>Block-type estimator for indoor channels</td>
</tr>
<tr>
<td>[Kim, Park & Hong, 2005]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Precoding</td>
<td>Converges fast</td>
<td>Introduce a bias to each carrier</td>
</tr>
</tbody>
</table>