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Abstract – This paper presents a novel approach for deblocking JPEG images.  

First, original-image pixels are related to corresponding JPEG-image windows via 

multiple linear regression models.  Then, the regression-model coefficients are used to 

filter the decoded JPEG image.  A particular implementation of this approach was tested, 

and its performance was quantified using peak signal-to-noise ratio (PSNR) and the 

Structural Similarity Index (SSIM).  Numerical results indicated general improvements in 

visual quality, and visual evidence indicates both reductions in blocking artifacts and 

improvements in contrast. 
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INTRODUCTION & OBJECTIVES 

One of the main drawbacks of the JPEG standard is the introduction of blocking 

artifacts at high compression ratios.  This is part of the reason why the JPEG2000 

standard was developed.  However, JPEG2000 is not completely immune to blocking, 

especially if many tiles are used.  In addition, JPEG remains the most widely used 

algorithm for lossy compression of still images.  So, there is still ongoing research into 

different methods for deblocking decoded JPEG (and JPEG2000 to a lesser degree) 

images in order to improve overall image quality [1]. 

 My objectives for this project changed significantly from those stated in the 

Literature Survey report for two key reasons.  First, I was unable to obtain code for the 

published work I had referenced.  So, instead of implementing those algorithms myself, I 

concentrated on developing a novel approach for deblocking JPEG images and thus 

improving visual quality.  Second, I had some trouble working with the open-source 

JPEG2000 codecs I was able to find.  Therefore, I decided to try to make my approach 

general enough so that it might also be applied to JPEG2000. 

 

APPROACH 

 First, let us assume that we have an original image and a JPEG encoded/decoded 

version with significant blocking artifacts.  One very simple approach to reducing these 

blocking artifacts might be to smooth block-to-block transitions by equations (1) and (2).  

In equation (1), pixels adjacent horizontal block boundaries are updated with a weighted 

sum of the original value and the values of pixels above and below.  Similarly, in 

equation (2), pixels adjacent vertical block boundaries are updated with a weighted sum 
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of the original value and values of pixels left and right.  This was exactly the first 

approach I tried, and my experiments showed that in most cases it improved image 

quality, but not very significantly.  Also, I was unsure about how to determine the best 

values for the coefficients.  However, this all gave me inspiration for developing the 

following, more sophisticated approach. 
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Now, consider the set of all original-image pixels such that the column number 

modulo eight is some constant.  In other words, each of these pixels has the same 

horizontal relation to the left and right vertical block-boundaries.  Also, for each of these 

original-image pixels, consider a window of jpeg-image pixels centered at the same 

location.  Then, we can attempt to relate the original-image pixels to jpeg-image windows 

with a linear regression model, described by equation (3).  In this equation, yi represents a 

particular original-image pixel value, the xij’s represent the corresponding jpeg-image 

window’s pixel values, and we try to find coefficients (βj’s) that minimize all of the error 

terms (εi’s).  Next, we can modify the jpeg-image by replacing appropriate pixels with 

their coefficient-weighted window sums, which can be seen as a type of spatially-

dependent filter.  The goal is to hopefully make each pixel values closer to its 

corresponding original-image value. 

y i =X
j = 1

n

x ij Aβ j
+ ε i  (3) 

The process I just outlined should then be extended to all eight column numbers 

and all eight row numbers in order to develop sixteen sets of coefficients.  An obvious 
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question that needs to be answered is how does the filtering process acquire the 

coefficients values?  There are two options.  First, the JPEG encoder could incorporate 

the regression modeling to determine coefficient values, and then encode them with the 

image.  This technique requires a constant amount of memory overhead, and so does not 

really affect scaling that much.  The other option would be to develop coefficients that 

work well for every image. 

 

IMPLEMENTATION 

In the implementation of my algorithm, I used 1x9 windows (four pixels to left 

and right of center) for column-wise regression and 9x1 windows (four pixels above and 

below center) for row-wise regression.  The sixteen sets of nine coefficients were 

computed sequentially, meaning that one set of coefficients was applied (i.e. appropriate 

pixels updated) before the next set of coefficients was computed.  I determined 

experimentally that in this type of sequential implementation, the order of computation 

affects performance.  I did not test every possible order, but found that progressing 

outwards towards block boundaries works well.  Therefore, the order I used was:  col5, 

col4, row5, row4, col6, col3, row6, row3, col7, col2, row7, row2, col8, col1, row8, row1. 

 

TESTING FRAMEWORK 

In order to test the performance of my algorithm, I first collected a set of 20 test 

images from [6].  The images that I selected depicted a variety of subjects (people, 

animals, buildings, scenery, etc.) and included the well-known mandrill, peppers, and 

Lena images.  Each of these images was converted to (if not already) 256 by 256 pixels, 
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8-bit precision grayscale images.  JPEG compression and decompression was performed 

using freely available Matlab code from [5].  For quantization, I used the common 

quantization matrix given in equation (4), but scaled it in order to achieve relatively high 

compression ratios and significant blocking artifacts.  Finally, image qualities were 

assessed using both PSNR and the Structural Similarity Index (SSIM) [7].  I chose to use 

SSIM because Sheikh et. al. determined that it is a pretty good image quality metric when 

compared to others [4].  Also, the code was freely available from [2].  

Q =
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RESULTS & DISCUSSION 

For this project I tested four different approaches, the results of which are listed in 

Table 1, and summarized in Table 2.  The algorithm titled “Simple Smooth” is the simple 

block-to-block smoothing described by equations (1) and (2) in a previous section.  The 

algorithm titled “My Algo.” is the implementation of my approach described in the 

previous sections, and using coefficients computed per-image.  Since this approach 

would require the encoder to pass additional information (i.e. the coefficients), it is sort 

of cheating.  Therefore, I also tested my algorithm by using a single set of coefficients 

that was developed by training on all of the test images (“My Algo.*”).  Finally, I tested 

the Shape-Adaptive Discrete Cosine Transform (SA-DCT) deblocking algorithm [1], 

which was implemented in Matlab and made freely available [3]. 
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  Percentage Increase in PSNR Percentage Increase in SSIM 

Im BPP 
Simple 
Smooth 

My 
Algo. 

My 
Algo.* 

SA-DCT 
Simple 
Smooth 

My 
Algo. 

My 
Algo.* 

SA-DCT 

1 0.274 0.243% 2.447% 1.937% -5.581% 2.511% 2.895% 2.282% 0.167% 
2 0.277 -0.899% 2.190% 1.532% -2.543% 1.835% 2.990% 2.258% -2.492% 
3 0.271 -1.087% 2.434% 1.807% -4.688% 1.520% 2.650% 2.182% 4.171% 
4 0.469 -1.939% 2.717% 2.067% -8.589% 0.284% 2.713% 2.302% 1.046% 
5 0.280 -2.069% 2.681% 1.198% 5.619% 2.138% 3.306% 2.428% 3.593% 
6 0.569 -2.720% 1.227% 0.723% -0.195% -14.54% -2.919% -4.204% -24.41% 
7 0.386 -2.298% 1.914% 1.428% -0.758% 0.126% 2.207% 1.950% -0.129% 
8 0.421 -4.091% 2.004% 1.210% -2.453% -0.196% 2.258% 1.942% 2.072% 
9 0.520 -3.683% 1.909% 1.212% -0.287% -2.104% 2.036% 1.576% -4.143% 
10 0.398 -1.918% 2.115% 1.502% -8.556% 2.112% 3.170% 2.840% 3.893% 
11 0.292 -2.363% 2.955% 1.984% -10.94% 1.056% 1.898% 1.600% 2.924% 
12 0.235 0.756% 1.620% 1.366% -3.550% 0.934% 2.032% 1.881% -7.712% 
13 0.586 -2.913% 1.502% 1.063% -2.582% -9.111% -0.829% -1.563% -23.82% 
14 0.462 -1.855% 2.702% 1.924% -8.627% -1.738% 2.403% 1.603% -10.30% 
15 0.508 -2.976% 1.310% 0.765% -0.056% -3.843% 1.283% 0.492% -8.876% 
16 0.443 -3.474% 1.928% 1.526% -0.662% -3.918% 1.469% 1.064% -10.27% 
17 0.355 0.138% 2.433% 2.056% 0.467% 2.609% 3.445% 2.726% 1.959% 
18 0.475 -3.281% 1.825% 1.222% 0.919% -3.968% 1.425% 0.585% -5.226% 
19 0.454 -0.761% 1.653% 1.341% -35.68% -4.970% -0.174% -0.225% -9.499% 
20 0.282 0.435% 1.481% 1.320% -38.39% 0.698% 0.540% 1.213% -13.86% 

Table 1.  Results by test image number.   

 
 Improvement in PSNR Improvement in SSIM 
 Num Avg % Best % Worst % Num Avg % Best % Worst % 

Simple 
Smooth 

4 -1.8378% 0.756% -4.091% 11 -1.428% 2.609% -14.541% 

My Algo. 20 2.052% 2.955% 1.227% 17 1.740% 3.445% -2.919% 
My Algo.* 20 1.459% 2.067% 0.723% 17 1.247% 2.840% -4.204% 
SA-DCT 3 -6.357% 5.619% -38.391% 8 -5.045% 4.17% -24.41% 
Table 2.  Summary of experimental results. 

 
As you can see in Tables 1 and 2, there a few test images for which the SA-DCT 

deblocking algorithm performed well, but in many cases it significantly hurt image 

quality as measured by both PSNR and SSIM.  As shown in Figure 1, the SA-DCT 

algorithm causes a significant amount of blurring, and many of the image features (hair, 

teeth, hat, etc.) are completely lost.  I believe that this algorithm may perform better with 

different parameters or at higher compression ratios, although I did not test these 

hypotheses on the entire image set. 
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Figure 1.  A visual comparison of deblocking algorithms. 

 

For the particular quantization under test, my algorithm performed significantly 

better.  And, as shown in Figure 1, my algorithm was able to reduce some of the blocking 

artifacts without blurring.  Also, it is interesting to note that in the JPEG image, you can 

see that the woman’s hat is darker than in the original image.  However, my algorithm 

helps to increase the luminance there and in other parts of the image, thus restoring the 

overall image contrast.  Finally, although the numerical results listed in Tables 1 and 2 

may not look too impressive, I ran a few tests with higher compression ratios and the 

actual percentage improvements were in general more significant. 
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FUTURE WORK & CONCLUSION 

 In conclusion, my novel approach for deblocking JPEG images looks promising 

when compared to an existing technique.  However, there are many possibilities for 

future work.  First, my approach is a very general framework and I fully tested only one 

particular type of implementation.  Other implementations using different windows could 

be explored.  Also, instead of computing coefficients with respect to row or column, 64 

sets of coefficients might be computed, one for each pixel location within a block.   

Next, for this project I performed testing with one particular selection of the quantization 

matrix.  In the future, testing should be done with different levels of compression.  I think 

that coefficients computed using one particular quantization should work for other levels 

of compression.  However, better performance might be achieved by using coefficients 

that are dependent on the actual level of compression. 
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