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Abstract

In machine learning, classification is defined as the task of taking an instance of the dataset and

assigning it to a particular class. Classifiers are constructed using the training set, such that a novel

instance is labeled with the “correct” class. Usually, there is the underlying assumption that instances

within a class are similar and instances across classes are dissimilar. For example, given a dataset of

images of cars and bicycles, the shapes and appearances of the two classes are different. While this

is a valid assumption, in reality, there may also be differences within a particular class, although it

may be less pronounced. For example, the car class may be composed of side-view, front-view, and

rear-view images of cars. Therefore, variations can be found within each class and homogeneous groups

can be formed for each variation. Then, each group can be considered to be a “sub-class” for training

a classifier that can focus on the specific aspect of the class.
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I. INTRODUCTION

Object recognition is a fundamental problem in computer vision that involves the tasks of

detecting, categorizing, and identifying objects in images and videos. The goal is to allow a

machine to understand and interpret an image or video the way humans do. There are many

applications in various fields which can benefit from a successful object recognition system. For

example, most of the returned images from search engines are irrelevant to the query term. This

problem could be alleviated if the search were performed based on the content of the image

rather than the content of the query text. In medical imaging, automatically identifying any

irregularities or symptoms would increase early detection of diseases. Vehicle accidents could

entirely be eliminated with a vehicle that controls its speed based on road and weather conditions,

proximity to other vehicles, etc.

The problem is challenging because of the variability in position, scale, pose, and shape of

the object of interest, imaging and lighting conditions, occlusions, and extreme clutter where the

object occupies a much smaller portion in the image than the background.

The standard procedure of measuring success of an object recognition system is to test the

algorithm on benchmark datasets. A typical dataset contains a handful to hundreds of object

categories. The underlying assumption is that images within the same object category are similar

and that images from different object categories are dissimilar, with varying degrees depending

on the category. While this is a valid assumption, it may be reasonable and even favorable to

divide a category further into sub-categories. Each sub-category, or sub-class, can then be used

to train the system, thereby focusing on specifics of the class that would otherwise be ignored

with a globally trained system using the original class.

An object recognition system that utilizes sub-classes can be divided into four modules:

image representation, pairwise image similarity computation, clustering, and classification. The

difficulty of the implementation of the system depends on which algorithms are used for each

module. Since each sub-class can be treated as a class, the system is a natural extension of

a standard global object category learning algorithm. Therefore, the overall implementation is

relatively simple.
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II. RELATED WORK

The “bag-of-features” approach to visual recognition has been quite successful. The basic

idea is to represent an image as a set of local features collected from salient regions. Patches

are detected on salient points, e.g., corners, and a visual descriptor vector is evaluated for each

patch. Thus, the image can be represented as a distribution of these features. Some examples of

salient regions are corner-like regions [1] and “blob-like” regions [2]. The Scale Invariant Feature

Transform [3] (SIFT) is another method for detecting and describing salient regions, where its

main contribution is the descriptor that describes salient regions based on the magnitude and

direction of gradients.

To define a similarity measure between images, the distribution of local features can be com-

pared. There are several options for computing similarity between images, including similarity

in appearance and similarity in spatial layout. The Proximity Distribution Kernel [4] (PDK)

is a method that measures similarity between images based on the spatial layout of the local

appearance features in the images.

Clustering is the partitioning of a data into subsets, such that the instances in each subset have

proximity in terms of some defined distance measure. There are several methods for clustering,

including k-means [5], agglomerative [6], and spectral clustering [7]. The Normalized Cuts [8]

method is a type of spectral clustering algorithm that has been applied to image segmentation

and data clustering.

Classification is a tool necessary for labeling novel instances. There are many possible clas-

sifiers, such as the Nearest Neighbor Classifier [9], Neural Networks [10], and Support Vector

Machines [11] (SVM). SVMs have been shown to produce very good results in the fields of text

categorization and image categorization, among many others.

III. APPROACH AND IMPLEMENTATION

Each image in the dataset is represented as a set of local features. This representation allows

for recognition systems to be robust to clutter, occlusion, and common transformations of objects

such as rotation, translation, and scale. I use the Harris detector to detect corner-like regions [1]

and the Maximally Stable Extremal Region [2] (MSER) detector to detect “blob-like” regions.
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Fig. 1. Block diagram of the system model. First, each image is represented as a set of features using SIFT [3]. Then, pair
wise image similarity values are computed using the PDK [4], and sub-classes are formed within each object category with
Normalized Cuts [8]. Finally, SVM [11] classifiers are trained on each sub-class to classify novel images.

The Harris detector finds corner-like regions by shifting a window through the image and

determining regions that have significant change in contrast in all directions. The MSER detector

finds regions in the image that have high or low intensity than all surrounding pixels outside

their boundaries. On each of the detected regions, the SIFT [3] descriptor is computed. A set of

8-bin orientation histograms are computed on 4 x 4 arrays (each array composed of 16 pixels)

for each detected region. The gradient magnitude of each pixel is weighted by a Gaussian, and

added to a bin in the corresponding region histogram. This produces a 128 dimensional feature

vector (4 x 4 x 8), that is invariant to illumination conditions and minor viewpoint changes.

Experiments in [3] show that high accuracy can be achieved for feature matching in different

images, and have been shown to outperform other local descriptors on many types of images.

For my experiments, on average, each image was represented by about 1000 features.

The next step is to compute a similarity measure between all images in all classes, in order

to train discriminative classifiers that can distinguish one class from another. The PDK [4]

is a method that measures similarity between images based on the spatial agreement of their

local appearance features. First, the set of features from all images are vector quantized into V

codewords which constitute the codebook of the dataset. Each feature in an image is replaced

with the nearest codeword in the codebook, and is associated with its x and y image coordinates.

Then, for each image, a proximity distribution is measured: for each codeword pair vi and vj

in the image, a distribution Hr(i, j) of the r-spatially nearest codewords of type j to codewords

of type i is stored in a 1-D vector of length r. The collection of these 1-D vectors for every

combination of word pairs (all possible i and j pairs) produces the proximity distribution Hr.

Finally, the proximity distributions between all images are compared to produce the PDK matrix,
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where the PDK between image I1 and image I2 is defined as:

PDK(I1, I2) =
V∑

i,j=1

R∑
r=1

min(H1
r (i, j), H2

r (i, j)) (1)

The PDK is invariant to scale, rotation, and translation of the object, since the relative spatial

positions between the features in the image are considered, rather than their absolute distances to

one another. On many object category datasets, the PDK has been shown to outperform methods

that take only appearance into account [4]. For my implementation, I constructed a 200-word

codebook (V = 200), and computed the distribution of 64 spatial neighbors (R = 64) per feature.

Once a measure of similarity is computed between all images, this information can be used to

find sub-classes within each object category. Graph-theoretic clustering methods can be applied

if each image is viewed as a node in a graph and the PDK values are viewed as non-directive

weighted edges between each pair of images. The Normalized Cuts [8] spectral clustering

algorithm partitions the graph such that the edges between different groups have low weights

while edges within a group have high weights. Each object category is clustered this way.

Specifically, the clustering problem is formulated as maximizing the objective function, wT
nAwn,

where A is the affinity matrix and wn is the vector of weights linking the data points to the nth

cluster, subject to wT
n wn = 1. This can be formulated as an eigenvalue problem: Awn = λwn. To

find k clusters, the eigenvectors associated with the k largest eigenvalues are computed. The data

points are clustered by thresholding the components of the eigenvectors, where the threshold is

iteratively refined to produce the best “cut”. The problem is adjusted to not only find the minimum

cut, but also maximize the inter-cluster difference (hence its name, the “normalized” cut). While,

the exact solution is NP-hard, an approximate solution can be found.

Finally, SVMs [11] are used for classification. An SVM classifier finds the optimal hyperplane

in feature space that achieves maximum separation between two classes of points. This is done

by finding the unique optimal boundary between the the nearest points on either side of the

hyperplane (called support vectors). Novel test instances are classified to be positive or negative,

depending on which side of the hyperplane they fall on. The objective function for finding the

optimal hyperplane assumes that the data is linearly separable. If the data is not linearly separable,
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the data can be mapped to a higher dimensional space using the “kernel trick”. A kernel function

is a function that is equivalent to an inner product in feature space which implicitly maps data

to a high-dimensional space. As long as the set of points can be written as an inner product, it

can be mapped to a space where it can be separated. This is proven by Mercer’s Theorem [12],

and is shown that every semi-positive definite symmetric function is a kernel function. The PDK

satisfies this condition.

The SVM can be extended to multi-class classification by constructing a binary classifier for

each class, where the instances in the class of interest are treated as the positive class, and the

instances in all other classes are treated as the negative class. The test instance is labeled with the

class associated with the classifier that produces the highest confidence. This is called 1-vs-all

SVM classification, and I used this method for my experiments.

IV. DISCUSSION

Other known object recognition systems do not explicitly find groups within a class to train

classifiers. Some approaches to capture local information within the data have been proposed.

Bottou and Vapnik [13] suggested constructing classifiers using only the training data that is

near a given test instance. Zhang et al. [14] constructed a hybrid nearest neighbor and SVM

classifier which showed improved results over a global SVM classifier. However, both methods

are sensitive to the position of the test instance in feature space and hence training must be

performed separately for each test instance. In contrast, the proposed method is able to capture

local structure of the data independent to the test instances, and thus training can be done offline.

V. RESULTS

The algorithm is evaluated on an image dataset commonly used to test object recognition

algorithms: the PASCAL Visual Object Classes Challenge 2005 dataset [15].

The PASCAL dataset consists of 4 object categories: motorbikes, bicycles, people, and cars.

There are 684 training images (214 motorbikes, 114 bicycles, 84 people, 272 cars) and 689

testing images (216 motorbikes, 114 bicycles, 84 people, 275 cars). The train and test sets are

disjoint. The objects in the images have significant variation in appearance due to changes in
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(a) (b)

Fig. 2. Confusion matrices showing classification accuracies for the baseline method (a) and the proposed method (b) on the
PASCAL dataset [15]. The number of sub-classes for the proposed method was set to 3 per object category. m: motorbikes, b:
bicycles, p: people, c: cars.

viewpoint, scale, and rotation. Furthermore, the amount of clutter present in each of the images

is large, making the dataset quite difficult. The large variation in the objects also means that

homogeneous groups can be formed within each category that capture certain aspects of the

class.

For the proposed method, classifiers were trained for each sub-class found from each class.

In order to choose the number of sub-classes, I sampled the training set to form a validation set

(50 images per class) in which I trained and tested SVM classifiers with possible sub-classes

in the range [2, 5]. Three sub-classes per class gave the best results. When a test image was

classified as belonging to a sub-class, it was labeled with the object category that the sub-class

belonged to. I compared the proposed method with the baseline method (where classifiers are

trained using all images in a object category and no sub-classes are formed), by computing the

mean classification accuracy for each category. Confusion matrices showing these results are

shown in Figure 2.

Overall, there is improvement over the baseline method, especially for the bicycle and people

classes. These two classes exhibit more variation than the other two classes, and thus the sub-

classes capture more meaningful structures within each class. The relatively high overall accura-

cies for the two methods (around 80%) shows that the combination of feature representation by

SIFT, image matching by PDK, and classification with SVMs performed well. The people class

produced the lowest accuracy. This is probably due to it having the lowest number of training
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TABLE I
OVERALL MEAN ACCURACIES FOR THE THREE CLASSIFICATION METHODS ON THE PASCAL DATASET [15]. THE NUMBER

OF SUB-CLASSES FOR THE PROPOSED METHOD WAS SET TO 3 PER OBJECT CATEGORY.

Accuracy (%)

baseline method 81.86
proposed method 82.87
K-NN (K=1) 53.70

images, and also due to it having the most clutter in its images.

I also compared the proposed method to the K-nearest neighbor [9] (K-NN) classifier, which

labels a novel instance by taking the mode of the labels of the K nearest training instances in

feature space to the novel instance. It is a commonly used classifier, due to its simplicity and

relatively good performance. K is a parameter that needs to be chosen by the user. In order to

choose K, the K-NN classifier was trained and tested on a validation set (the same procedure of

choosing the number of sub-classes) with values in the range [1, 10]. The highest accuracy was

achieved when K=1. Overall mean accuracies of the proposed, baseline, and K-NN methods are

shown in Table I.

The proposed and baseline methods both outperformed the K-NN method significantly. This

shows that on this dataset, the SVM classifier is significantly stronger than the K-NN classifier,

presumably due to its better generalization properties. The K-NN classifier only looks at the

neighbors within the vicinity of each test instance, and hence can suffer when there are train or

test instances that are outliers. It also must “guess” the label of a test instance when the mode

label among its K nearest neighbors is not unique. I chose the label randomly among the top

labels in such situations.

VI. CONCLUSION

Object recognition is a challenging problem, but in recent years many techniques have achieved

some success. There are many components to the problem, including image representation,

learning, clustering, and classification. While a dataset representing an object category should

be homogeneous in the sense that each image should contain the object of interest, there is
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usually enough variation within each object category to form homogeneous sub-categories. These

sub-categories can then be treated as sub-classes to train classifiers with the ultimate goal of

increasing performance compared to a global classifier which trains on the original class images.

I have shown in this project that such a system is able to make improvements over a global

classifier, by performing experiments on a standard image dataset.
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