
Finding Clusters Within a Class to Improve
Classification Accuracy

Yong Jae Lee
The University of Texas at Austin

EE381K Multidimensional Digital Signal Processing
Literature Survey Report

March 21st, 2008

Abstract

In machine learning, classification is defined as the task of taking an instance of the dataset and

assigning it to a particular class. Classifiers are constructed using the training set, such that a novel

instance is labeled with the “correct” class. Usually, there is the underlying assumption that instances

within a class are similar and instances across classes are dissimilar. For example, given a dataset of

images of cars and bicycles, the shapes and appearances of the two classes are different. While this

is a valid assumption, in reality, there may also be differences within a particular class, although it

may be less pronounced. For example, the car class may be composed of side-view, front-view, and

rear-view images of cars. Therefore, variations can be found within each class and homogeneous groups

can be formed for each variation. Then, each group can be considered to be a “sub-class” for training

a classifier that can focus on the specific aspect of the class.



I. INTRODUCTION

Object recognition is a fundamental problem in computer vision that involves the tasks of

detecting, categorizing, and identifying objects in images and videos. The goal is to allow a

machine to understand and interpret an image or video the way humans do. There are many

applications in various fields which can benefit from a successful object recognition system .

For example, most of the returned images from search engines are irrelevant to the query term.

This problem could be alleviated if the search were performed based on the content of the

image rather than the content of the query text. In medical imaging, automatically identifying

any irregularities or symptoms would increase early detection of diseases and ultimately chances

of survival. In sports, controversial calls made by referees could be eliminated by automatically

signaling out-of-bounds plays and other violations that require no human judgement. Vehicle

accidents could entirely be eliminated with a vehicle that controls its speed based on road and

weather conditions, proximity to other vehicles, etc.

The problem is challenging because of the variability in the position, scale and pose, shape

of the object, imaging and lighting conditions, occlusions, and extreme clutter, where the object

occupies a much smaller portion in the image than the background.

The standard procedure of measuring success of an object recognition system is to test the

algorithm on benchmark datasets. A typical dataset contains a handful to hundreds of object

categories. The underlying assumption is that images within the same object category are similar

and that images from different object categories are dissimilar, with varying degrees depending

on the category. While this is a valid assumption, it may be reasonable and even favorable to

divide a category further into sub-categories. Each sub-category, or sub-class, can then be used to

train the system, thereby focusing on specifics of the class that would otherwise be ignored with a

globally trained system using the original class. This report will focus on the tools necessary for

building such an object recognition system. The related works can be divided into four sections:

image representation, pairwise image similarity computation, clustering, and classification.



II. RELATED WORK

The “bag-of-features” approach to visual recognition has been quite successful. The basic

idea is to represent an image as a bag of local features collected from salient regions. Patches

are detected on salient points, e.g., corners, and a visual descriptor vector is evaluated for each

patch. Thus, the image can be represented as a distribution of these features. Some examples

of salient regions are corner-like regions [1] and “blob-like” regions [2]. The Scale Invariant

Feature Transform [3] (SIFT) is another method for detecting and describing salient regions,

where its main contribution is the descriptor which describes salient regions based on magnitude

and direction of gradients.

To define a similarity measure between images, the distribution of local features can be com-

pared. There are several options for computing similarity between images, including similarity

in appearance and similarity in spatial layout. The Proximity Distribution Kernel [4] is a method

which measures similarity between images based on the spatial layout of the local appearance

features in the images.

Clustering is the partitioning of a data into subsets, such that the instances in each subset have

proximity in terms of some defined distance measure. There are several methods for clustering,

including k-means [5], agglomerative [6], and spectral clustering [7]. The Normalized Cuts [8]

method is a type of spectral clustering algorithm which has been applied to image segmentation

and data clustering.

Classification is a tool necessary for labeling novel instances. There are many possible clas-

sifiers, such as the Nearest Neighbor Classifier [9], Neural Networks [10], and Support Vector

Machines [11]. Support Vector Machines (SVM) have been shown to produce very good results

in the fields of text categorization and image categorization, among many others.

III. SCALE INVARIANT FEATURE TRANSFORM

SIFT is one of the most popular techniques for extracting local features in images. In the

detection stage, the image is first convolved with Gaussian filters at multiple scales. Then the

differences are taken between neighboring Gaussian-blurred images to produce Difference of

Gaussians (DoG) images. Each pixel in the DoG images is compared to its immediate neighbors



Fig. 1. Illustration of the SIFT [3] descriptor created by computing gradient magnitude and orientation at each sample point
in a region around the interest point location.

both in the same scale (8 pixels) and the neighboring scales (9 pixels each), and candidate interest

points are taken as the local maxima and minima. This step allows for invariance to scale. Since

many of the candidate points are unstable, the algorithm discards points with low contrast and

points that are poorly localized along an edge. This is done by performing a detailed fit to nearby

data for each point, to determine accurately the location, scale, and ratio of principal curvatures.

Once the final set of keypoints are determined, each one is assigned an orientation. Pixels in a

neighboring region around the interest points in the Gaussian-blurred image are assigned to a 36-

bin orientation histogram based on their directions and Gaussian weighted gradient magnitudes.

Each bin in the histogram covers 10 degrees, and peaks in the histogram correspond to the

dominant orientations of the corresponding interest point. This step allows for invariance to

rotation.

Now that scale and rotation invariant interest point regions are detected, highly distinctive

descriptors are computed for each region. This is the feature descriptor step. Similar to computing

the orientation of the interest points, a set of 8-bin orientation histograms are computed on 4

x 4 arrays (each array composed of 16 pixels) for each interest point region. The gradient

magnitude of each pixel is weighted by a Gaussian, and added to a bin in the corresponding

region histogram. This produces the SIFT descriptor, which is a 128 dimensional feature vector

(4 x 4 x 8). Figure 1 shows an example of a (2 x 2 x 8) region descriptor. The descriptor achieves

invariance to illumination conditions and minor viewpoint changes. Experiments in [3] show that

high accuracy can be achieved for feature matching in different images, and have been shown



to outperform other local descriptors on many types of images.

IV. PROXIMITY DISTRIBUTION KERNEL

In order to train discriminative classifiers that can distinguish one class from another, a

similarity measure between all images in all classes must be made. The Proximity Distribution

Kernel (PDK) [4] is a method that measures similarity between images based on the spatial

layout of their local appearance features.

First, local features are extracted from salient regions in each image. The set of features from

all images are vector quantized into R codewords which constitute the codebook of the dataset.

Each feature in an image is replaced with the nearest R codeword in the codebook, and is

associated with its x and y image coordinates. Then, for each image, a proximity distribution is

measured: for each codeword pair vi and vj in the image, a distribution Hr(i, j) of the r-spatially

nearest codewords of type j to codewords of type i is stored in a 1-D vector of length r. The

collection of these 1-D vectors for every combination of word pairs (all possible i and j pairs)

produces the proximity distribution Hr. Finally, the proximity distributions between all images

are compared to produce the PDK matrix, where the PDK between image I1 and image I2 is

defined as:

PDK(I1, I2) =
V∑

i,j=1

R∑
r=1

min(H1
r (i, j), H2

r (i, j)) (1)

A nice property of the PDK is that the relative spatial positions between the features in the

image are considered, rather than their absolute distances to one another. Thus, the algorithm

is invariant to scale, rotation, and translation of the object of interest. On datasets which have

a lot of variability within each object category, the PDK has been shown in [4] to outperform

methods that take only appearance into account. On datasets which do not have much variability,

the PDK shows comparable accuracy to that of other methods.

V. SPECTRAL CLUSTERING WITH NORMALIZED CUTS

Once we have a measure of similarity between all images, we can use this information to

classify novel images. We can also use it to find clusters within each object category. If we



Fig. 2. Using graph theory, images can be considered as nodes and pair-wise similarities can be considered as non-directed
edges between nodes.

view each image as a node in a graph, and the similarity values to be a non-directive weighted

edge between the images, then we can use graph theoretic methods to partition the graph into

clusters. This is the idea of the normalized cuts spectral clustering technique proposed in [8],

and is shown in Figure 2. The objective is to partition the graph in such a way that the edges

between different groups have low weights while edges within a group have high weights. Each

class will be clustered in this way, with the number of clusters for each class being a user-defined

parameter.

Specifically, the problem is formulated as maximizing the objective function, wT
nAwn, where

A is the affinity (similarity) matrix and wn is the vector of weights linking the data points to

the nth cluster. Since scaling the weight vector by λ scales the objective function by λ2 (and

hence is not significant), the objective function is maximized subject to wT
n wn = 1. This can be

formulated as an eigenvalue problem: Awn = λwn. To find k clusters, the eigenvectors associated

with the k largest eigenvalues is computed. By thresholding the components of the eigenvectors

(which are the associated weights to the data points), the data points can be clustered according

to their weights to each other. The authors show that this is not enough to produce good clusters

when the data has outliers. In such data, the optimal cut in the graph will be chosen to leave the

outlier by itself. Hence, the problem is adjusted to maximize the within cluster similarity relative

to the across cluster difference. The exact solution is found to be NP-hard, but the authors show

that an approximate solution can be found.

The paper applies the algorithm to image segmentation where the Normalized Cuts algorithm

does quite well. Due to the subjectiveness of image segmentation, quantitative evaluations are

not made. However, many algorithms have used the Normalized Cuts method for data clustering



and image segmentation, and in practice have shown very good results.

VI. SUPPORT VECTOR MACHINES

Support vector machines (SVM) are supervised learning methods used for classification [11].

The objective is to find an n − 1 dimensional hyperplane that achieves maximum separation

between two classes of points in an n-dimensional feature space. The nearest points on either

side of the hyperplane are called support vectors, and the hyperplane that maximizes the distance

to the support vectors is shown to be the unique optimal boundary between the two classes.

The m training points in the feature space can be considered as {(x1,y1), (x2,y2), . . . , (xm,ym)}
where xi is an n-dimensional feature vector and yi ∈ {+1,−1} denotes its class label. The

points are said to be linearly separable if there exists a vector w and a scalar b such that:

w · xi + b ≥ 1 if yi = 1 and w · xi + b ≤ −1 if yi = −1 is valid for all training points, as shown

in Figure 3. This can be re-written as

yi(w · xi + b) ≥ 1, i = 1, . . . , m (2)

whereby the optimal hyperplane can be found by the optimization problem of minimizing ‖w‖2/2

subject to (2). A test instance z is classified with f(z) = sign(w · xi + b). If f(z) = 1, the test

instance is classified as the positive class; otherwise, it is classified as the negative class.

The authors show that if the data is not linearly separable, then slack variables can be intro-

duced where some points from the opposite class can belong on the otherside of the separating

Fig. 3. Decision boundary and margin of SVM. The circled points are the support vectors.



hyperplane. Another method they propose is to map the points into a higher dimensional space

in which the data is linearly separable. It is shown that any set of datapoints can be mapped to

higher dimensional spaces in which they are separable via the “kernel trick”. A kernel function

is a function that is equivalent to an inner product in feature space which implicitly maps data

to a high-dimensional space. As long as the set of points can be written as an inner product, it

can be mapped to a space where it can be separated. This is proven by Mercer’s Theorem [12],

and is shown that every semi-positive definite symmetric function is a kernel function.

Since the SVM is a binary classifier, there are several options to extend it to the multi-class

setting. The simplest is a vote-based method, where all possible pairwise binary classifications

between all classes are made. The test instance is labeled with the class that receives the most

votes. This is called 1-vs-1 SVM classification.

VII. CONCLUSION

Object recognition is a challenging problem, but in recent years many techniques have achieved

some success. There are many components to the problem, including image representation,

learning, clustering, and classification. While a dataset representing an object category should

be homogeneous in the sense that each image should contain the object of interest, there is

usually enough variation within each object category to form homogeneous sub-categories. These

sub-categories can then be treated as sub-classes to train classifiers with the ultimate goal of

increasing performance compared to a global classifier which trains on the original class images.

The techniques to do so have been reviewed in this paper.

VIII. FUTURE WORK

The dataset I will use to test the method will be the PASCAL Visual Object Classes Challenge

2005 dataset [13]. It is composed of 4 object categories: cars, bicycle, people, and motorbikes.

It fits nicely with the proposed algorithm because there are many variations in viewpoints,

scale, and pose of the objects in the images. The code for extracting SIFT features is available

on the webpage of Robotics Research Group at the University of Oxford. LIBSVM [14] has

an implementation of the SVM classifier in Matlab. Normalized Cuts clustering code is also



available. I have coded the PDK algorithm in Matlab. Because the algorithm is set up as

a combination of modules, I can easily substitute other methods for each module to make

improvements.

REFERENCES

[1] K. Mikolajczyk and C. Schmid, “Scale & Affine Invariant Interest Point Detectors,” International Journal of Computer

Vision, vol. 60, no. 1, pp. 63–86, 2004.

[2] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide baseline stereo from maximally stable extremal regions,” in

British Machine Vision Conference, 2002.

[3] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, vol. 60,

no. 2, pp. 91–110, 2004.

[4] H. Ling and S. Soatto, “Proximity Distribution Kernels for Geometric Context in Category Recognition,” IEEE 11th

International Conference on Computer Vision, pp. 1–8, 2007.

[5] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, vol. 1, no. 281-297, p. 14, 1967.

[6] N. Jardine and R. Sibson, Mathematical Taxonomy, 1971.

[7] A. Ng, M. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an algorithm,” Advances in Neural Information

Processing Systems 14: Proceedings of the 2002 Conference, 2002.

[8] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[9] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on Information Theory, vol. 13, no. 1,

pp. 21–27, 1967.

[10] C. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, USA, 1995.

[11] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.

[12] J. Mercer, “Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations,”

Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical

Character, vol. 209, pp. 415–446, 1909.

[13] M. Everingham, A. Zisserman, C. Williams, L. Van Gool, M. Allan, C. Bishop, O. Chapelle, N. Dalal, T. Deselaers,

G. Dorko et al., “The 2005 PASCAL visual object classes challenge,” First PASCAL Challenge Workshop, 2005.

[14] C. Chang and C. Lin, LIBSVM: a library for SVMs, 2001.


