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Abstract

Image fusion schemes are still a popular area of academic research, but the growing field 
has few agreed upon standards.  Most schemes rely upon multi-scale decompositions.  
These algorithms contain many steps and complex decision models that may be difficult 
to implement in real-time video systems.  They are also susceptible to artifacts and noise 
enhancement because they treat source images as equally likely contributors to the fused 
result.  This paper will propose the study of a new brand of image fusion scheme for 
situational awareness applications where a visible light camera and an infrared camera 
are used.  In the proposed scheme, the image with the most content will be defined as the 
primary image and used as the base for the fused image.  The other source image is 
defined as secondary and used to overlay high contrast object information onto the 
primary image.  During daylight hours the algorithm would use the visible light camera 
as primary and add objects of interest from the infrared sensor.  This model maintains 
consistency with the intention of situational awareness systems to complement the human 
visual system with infrared content.  During nighttime operation, the infrared sensor 
would be primary and the algorithm would add objects of interest from the visible light 
camera.



I. Introduction

Situational awareness is the ability to see, understand, and interpret your surroundings in such a way 

as to be able to make informed decisions.  In environments where the human senses are obscured, 

distracted or overwhelmed, it is desirable to deploy electronic systems that perform the functions of 

the human senses and communicate the received information to a user.  Such systems also provide an 

opportunity to enhance sensing capabilities beyond that of a typical human.  It is no easy task to build 

electronics that recreate the complexity of the human senses to take in information, or the power of 

the human brain to combine this information and interpret it to make rational decisions.  We have 

made remarkable progress in sensing technology that provides visual awareness.  High-resolution 

optical cameras have long captured the world as we see it.  Infrared detectors now allow us to provide 

imagery in spectral bands that the human eye cannot see.  This allows us to see thermal content in a 

scene, as well as provide visibility in low-light and adverse weather conditions.

However, much work remains to determine the best way to combine these two sources of information 

for interpretation by the human visual system.  Situational awareness systems are often limited not by 

their ability to sense the environment, but by their ability to effectively combine and communicate 

information to the user [1].  Often, image fusion techniques are evaluated subjectively by peer 

reviewers [2].  It would be helpful to develop quantitative criteria for objectively evaluating fusion 

techniques. Some work has been done to define a set of quantitative evaluation criteria [3] but the 

ideal fused image quality metric is not yet agreed upon.

Since humans do not normally see emissions in the infrared spectrum, we are not used to interpreting 

that data.  Fusion algorithms must strike a balance between taking advantage of the new information 

that is available from infrared sensors, while presenting the information in a way that is familiar, not 



distracting, and easy to interpret.  Specific applications must be considered, because the optimal

fusion approach may depend on the scene content or application objectives.

Effectiveness is just one important characteristic of image fusion systems, although it has received 

most of the academic community’s attention on this topic.  Speed, efficiency and complexity of 

algorithms are also a concern in situational awareness applications.  Most implementations in 

situational awareness operate on streaming video from multiple sensors for near real-time display.  

Low-latency and high frame rates (30 fps) are essential, driving a trade-off between image quality and 

algorithm complexity and speed.  Also, many situational awareness applications are for mobile 

platforms (vehicles, UAVs, humans) where size, weight and power must be drivers for design.  

Sacrifices in image quality are often accepted if an algorithm can save system resources.

The focus of this paper will be to propose an image fusion algorithm that maintains image quality 

while improving simplicity and speed over those used in existing situational awareness systems.  I am 

interested in applying the strengths of leading high-quality image fusion algorithms, while developing

a simpler implementation for use in mobile situational awareness systems.

II. Background

A number of image fusion techniques have been proposed and studied.  There have also been 

multiple frameworks proposed for classifying and categorizing techniques [4] [5].  Proposals for 

image quality metrics and fusion image evaluation have also varied [2] [6] [7].  The fragmentation in 

the research is reflective of the topic’s early stage of development.  The area of image fusion 

technology is still immature and growing with few standards in place and a limited history of existing 

implementations outside of academia.



The simplest form of fusion algorithm is additive.  The fused result is a linear combination of the 

source images.  This approach is not commonly used.  In fact, there is little analysis available in the 

research because it is rarely used.

Most popular image fusion algorithms are based on multi-scale decomposition (MSD) techniques.  

An excellent survey of existing methods can be found in [4].  The MSD representation decomposes 

an image into contributions from different spatial frequencies.  An MSD transform is performed on 

each source image, and then the coefficients are combined in some intelligent manner as determined 

by the fusion algorithm of choice.  Finally, an inverse MSD transform produces the fused image.

MSD fusion schemes generally combine source image data by identifying edges and local areas of 

high contrast in each source, then transferring those edges to the fused image.  One trouble is that 

many algorithms inadvertently add noise from both sources, in addition to actual scene content.  The 

fused image then has more scene details than either source image alone, but it also has more noise 

than either source image alone.  In an attempt to make the algorithms more robust to noise, they are 

layered with decision and verification mechanisms which increase execution time and latency.

The difficulty is that most algorithms attempt to transfer all fine detail from both source images to the 

fused image.  Noise, depending on the fusion algorithm used, can look very much like fine detail and 

the algorithms pass it on to the fused image.  This paper will propose research into algorithms that 

employ more stringent decision thresholds for image fusion.  The aim is to continue to transfer 

prominent features to the fused image while reducing noise transfer.  This will be at the cost of losing 

fine detail from the source image.  However, this issue will also be addressed in the future work 

proposed.  First we must review some existing methods.



III. Additive Technique, α-Blending

The additive approach to image fusion is the simplest of methods.  The fused image can be as easy as 

a pixel by pixel average of the source images.  A slightly more advanced variation will use weighting 

factors to weight contributions from the source images differently.  The weighting factors can be 

applied to the image as a whole, or on a pixelwise basis.  This is sometimes called an α-blend since 

the weighting factor is represented by α as shown in equation 1.

1 2( , ) ( , ) (1 ) ( , )y i j x i j x i j    (1)

where: i,j are pixel indices in the images
α is the weighting factor
y is the output (fused) image
x1, x2 are the source images

The biggest downside to this approach is reduced contrast.  Given two images, if one has a flat 

intensity or low contrast in an area of the image then it will flatten out the contrast in that area of the 

fused image.  The weighting factors can help, but when applied globally you have to choose between 

limiting the low contrast effects and sacrificing the high contrast contributions.  We’d rather only use 

the parts of each source image that have high contrast and edge information.  This is the goal of 

multi-scale decomposition.

IV. Multi-Scale Decomposition Techniques

With multi-scale techniques, the source images are initially decomposed by spatial frequency content 

using a multi-scale transform.  An overview of the Laplacian Pyramid decomposition can be found in 

[8].  The basic decomposition will filter the source into a low-pass and high-pass component of the 

image.  The high-pass portion can be easily compressed because it is largely decorrelated.  The low-

pass portion can be down-sampled since it contains less information.  After down-sampling, the 

process can be repeated on the low-pass image.  The number of times the filtering and down-

sampling is performed is called the level of decomposition.



The output of the transform is a series of image frames.  Each frame contains coefficients that 

describe the source image content at a different frequency.  But the multi-scale transform choice is 

just one step in the multi-scale fusion technique.  There are many different ways to combine the 

source image coefficients into a fused image.  An excellent review can be found in [4].  This 

reference presents a framework for differentiating multi-scale fusion methods, shown in Figure 1.

Figure 1: Multi-scale image fusion framework presented by Zhang and Blum [4]

The multi-scale decomposition is only the first step of the algorithms.  It converts the source data into 

a format that allows the design of intelligent fusion algorithms based on spectral content.  The goal of 

these algorithms is to identify areas in each source image that contain lots of information and add 

these to the fused image.

After decomposition, the activity level measurement of each coefficient determines how much 

‘information’ is present at that coefficient in the source image.  These measurements can be made at 

each coefficient individually, in a small window around each coefficient, or in the region that the 

coefficient belongs.  Region-based measurements require a separate image segmentation filter that 

divides the image into a discrete number of regions.  The activity level measurements are used to 

determine how each source will be combined to form the fused image.  In some algorithms, 

coefficients with the highest activity levels are added to the fused image, but in others the fused 



coefficient is a weighted average of the source coefficients.  Optionally, verification can be performed 

to ensure that coefficients in a window or region of the fused image are taken from the same source 

image.  The final image is achieved with an inverse multi-scale transform.

V. Comparison of Existing Scheme Performance

Chen and Blum [2] put many algorithms to the test with a series of subjective and objective 

evaluations.  The algorithms they used are listed in Figure 2.  The source images and some samples of 

the fused results are given in Figure 3.

Figure 2: Fusion schemes evaluated by Chen and Blum [2]

Figure 3: Source images (a) and (b) and results of four fusion algorithms from Chen and Blum [2]



The additive method is shown in image (c).  It does contain elements of both source images.  A good 

fusion algorithm would maintain the contrast and information from at least the best source image, but 

the additive result shows much lower contrast and detail than the FLIR source image alone.

The three multi-scale algorithms are all improvements over the additive method in contrast.  

However, we can also see strange edge effects in all of them, particularly where the sky meets the 

trees.  This is because the sky is black in one source and white in the other.  These opposite 

representations of the same scene compete for inclusion in the fused image resulting in undesired

artifacts.  In these images, both sources are noisy so it’s difficult to prove that the fused image noise 

is a combination of the source noises.  However, in [9], the writers observe in their experiments that 

their fused images combine noise and artifacts from both source images.

VI. Future Work

Existing algorithms assume that both source images will contribute to the fused image equally, or that 

it isn’t known which of the source images will provide most of the fused image content.  In most 

scenarios this assumption for situational awareness is invalid.  Consequently, conflicting information 

from both sources competes in the fused image creating artifacts.  Also, image noise and reduced 

contrast from the poorer source image effects the fused result.

During the daytime, the resolution, sensitivity and dynamic range of the visible light camera will 

usually be superior to the image of the infrared sensor.  Conversely, at night the infrared provides a 

clear image while the visible sensor contains very little useful information.  In designing a fusion 

algorithm for situational awareness, we can choose one source image as the primary image and use it 

as a basis for the fused result.  The other source can be considered the secondary image and used to 

add complementary information to the fused image that is not included in the primary source image.



I propose a framework that defines the two source images as primary and secondary images.  This 

determination can be made using a histogram analysis or an entropy measure.  The secondary image 

will then be region-segmented using an existing segmentation algorithm.  Regions in the secondary 

image exceeding a threshold of activity or contrast level will be identified and fused into the primary 

image.  The threshold can be adjusted to add more or less secondary image content.

This approach should minimize noise contribution from the secondary image since only identified 

regions of interest from that image will be added.  Also, this approach is consistent with the intention 

of a situational awareness system to act as an enhancement to human visual capabilities.  During 

daytime conditions the fused image would be similar to the view seen by the human eye with 

contributions from the infrared detector only where feature detections unique to the infrared domain 

are present.  This scheme also eliminates some steps from the multi-scale schemes, including the 

transforms, so implementation should be comparatively less time-consuming and resource intensive.
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