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Abstract

One goal of active-passive data fusion is to combine the information collected by two types of

sonar sensors to better perform signal processing. Active sensors, for example, give a good estimate

of range, while passive sensors are most efficient at estimating the bearing and radiated spectrum

of a contact. If it is assumed that prior information about the state of a contact has been collected

in a data fusion framework, either by active sonar state estimates or by previous passive sonar state

estimates, then the opportunity arises to direct the resources of a passive beamformer toward areas of

high probability density. The modified beamformer can then provide a better estimate of the position

of the contact. This paper seeks to find an optimum way of directing the resources of a passive

horizontal line array when trying to estimate the direction of arrival (DOA), or bearing, of a contact.

Various approaches are investigated including cued beamforming, minimum variance distortionless

response (MVDR) beamforming, and robust capon beamforming (RCB). The resulting refinement in

DOA estimation is compared to standard MVDR beamforming techniques. The scenarios in which cued

beamforming outperforms surveillance beamforming are presented. Finally it is shown that although

RCB does not currently outperform MVDR beamforming, much research is still needed.
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I. INTRODUCTION

DATA fusion has become an increasingly popular topic in a number of fields [1]. One

of its main goals is to use measurements from multiple sensors to better perform signal

processing. Additionally, the integration of active and passive sonar systems is known to improve

performance [2] because of the complementary information the two systems provide. Specifically,

active sensors give a good estimate of range, while passive sensors are most efficient at estimating

the bearing and radiated spectrum of a contact. It is therefore natural to apply data fusion to

active and passive sonar systems.

Various types of beamformers have been used for passive sonar. The conventional (delay-and-

sum) beamformer (CBF) is popular due to its simple implementation, but its precision is limited

by the length of the array. Minimum variance distortionless response (MVDR) beamforming [3]

can provide much greater precision, but it is sensitive to exact knowledge of the steering vector.

The robust capon beamformer (RCB) [4] has addressed some of the sensitivities of MVDR and

is therefore a prime candidate for data fusion. The focus of this paper will be on direction of

arrival (DOA) estimation for underwater sonar using a passive, uniformly-spaced horizontal line

array (HLA). The goal will be to design a beamformer that provides minimum error in DOA

estimation while additionally providing a low entropy measurement. That is, the measurements

should be both accurate and precise.

II. BACKGROUND

A. Minimum Variance Distortionless Response (MVDR) Beamforming

The MVDR beamformer was originally derived by Capon in 1969 [3]. Suppose we have a

sampled array output given by xn, a replica vector a(φ), and an estimated CSM, Rx, given by

Rx =
1
K

K

∑
i=1

xixH
i (1)

where i is the snapshot number and K is the number of snapshots used to approximate the CSM.

It is assumed that K is large enough to ensure that Rx is full rank. The optimization criteria are

to minimize the output power while maintaining a distortionless response in the look direction.
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In other words, the beamforming weights are found from the solution of

min
w

wHRxw subject to wHa(φ) = 1 (2)

to be

wMV DR(φ) =
R−1

x a(φ)
a(φ)HR−1

x a(φ)
. (3)

It should be noted that performing the inverse of the matrix Rx (O(N3) for an N element array)

can be avoiding by solving for y = R−1
x a(φ) in Rxy = a(φ) [5]. This can be done using a variety

of linear equation solvers with complexity less than O(N3) since Rx is a Hermitian matrix.

The MVDR beamformer is very sensitive to mismatch between the actual and assumed DOA.

Fig. 1 shows the squinting effect in which greater than unity response appears to one side of the

contact when the steering vector is not perfectly matched to the true DOA. One common method

Figure 1. The “squinting” effect. The solid line is where the beamformer is steered to and the dotted line is the true DOA of
the contact. As SNR becomes large this effect can become so strong that MVDR places a null of the beampattern at the true
DOA of the contact in an attempt to minimize the output power. (Figure 6.26 from [6].)

of increasing the robustness of MVDR is to diagonally load Rx when calculating the weights

in (3). That is, replace Rx with R̄x = Rx + εI where ε is a positive scalar. As ε is made large

the sensitivity of the MVDR beamformer is decreased. This can be clearly seen by analyzing

the form of the beamformer weights for exceedingly large diagonal loading: lim
ε→∞

wMV DR(φ) =
a(φ)

a(φ)Ha(φ) = wCBF(φ), which are simply the CBF weights. Unfortunately, it is not clear how to

optimally choose ε . In practice, its value is often arrived at iteratively. This issue is addressed

in Section IV-B.
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B. Prior Information

Let us assume that prior information about the state of a contact has been collected in a

data fusion framework, either by active sonar state estimates or by previous passive sonar state

estimates. Additionally, assume that the only information available is the bearing from the array

to the contact and that it is in the form of a one-dimensional continuous random variable, φ , with

probability density function (PDF) p(φ). The generalization to multiple dimensions is trivial and

therefore will not be considered at this time.

III. BAYESIAN DATA FUSION FRAMEWORK

Let us now discuss how beamformer measurements will be incorporated into the state estimate

of a contact. The information that is provided by each measurement of the HLA is given by a

likelihood function L(Φ|φ), where L(Φ|φ) represents the probability that the measurement Φ

would occur given that the contact is actually at φ . If it is assumed that the signal and noise

amplitudes are Gaussian random processes the likelihood function is given by [7]

L(Φ|φ) = cexp
{

Kγσ
2
MV DR(φ)

}
(4)

where the constant, c, assures that the PDF sums to 1, the parameter γ is a function of the

number of array elements and the SNR, and σ2
MV DR(φ) = wH

MV DR(φ)RxwMV DR(φ) is the power

estimate when MVDR beamforming is used. By a simple application of Bayes’ rule, a new state

estimate, p(φ |Φ) (the posterior PDF), can be formed by combining the previous state estimate,

p(φ) (the prior PDF), and the likelihood function, L(Φ|φ):

p(φ |Φ) =
L(Φ|φ)p(φ)∫

L(Φ|φ ′)p(φ ′)dφ ′
. (5)

This is a straightforward technique used by other authors, e.g. [7]. A measure for the amount of

refinement given by p(φ |Φ) can be given by the difference in differential entropy [8] between

the prior and posterior PDF. The differential entropy is given by

H =
∫

π

0
p(φ) log10(p(φ))dφ (6)
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and the entropy improvement (difference in differential entropy) by

∆H(θ) = Hprior−Hpost(θ). (7)

Here, the argument θ of Hpost is referring to the actual DOA of the contact. The overall

effectiveness of a passive beamformer can then be expressed as the expected value of the entropy

improvement:

< ∆H >=
∫

π

0
p(θ)∆H(θ)dθ . (8)

This technique was motivated in [9]. Although a positive value of < ∆H > indicates a refinement

in the expected DOA estimate, it does not necessarily indicate refinement towards the actual

DOA. The expected absolute error in DOA estimate,

< ∆φ >=
∫

π

0
p(θ)

∣∣∣∣∣argmax
φ

{p(φ |Φ,θ)}−θ

∣∣∣∣∣dθ , (9)

gives a better indication of this [10]. In this case p(φ |Φ,θ) refers to the posterior PDF resulting

from a measurement when the target is actually at θ .

IV. PASSIVE BEAMFORMING APPROACHES

A. Cued Beamforming

In [9], [10] an intuitive approach for concentrating (MVDR) beams in areas of high prior

probability density was proposed. These cued beams were steered within a certain number of

standard deviations from the mean of an assumed Gaussian prior PDF. The basic idea behind

this approach was that there will be less of a chance for steering vector mismatch if the beams

are closely spaced. Assuming that the number of cued beams equals the number of standard

MVDR beams, a greater refinement in bearing could be obtained through an equal expenditure

of computational resources. Although advantages have been seen in this technique, a continual

spacing of maximum response axes (MRAs), based on the values of p(φ), would allow for the

advantage of a full coverage of bearing. That is, MRAs should continually change from dense

spacing in areas of high prior probability to sparse spacing in areas of low prior probability.
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A generalized strategy for cuing beams is now presented. Given a prior PDF, p(φ), the

cumulative distribution function (CDF) is given by F(φ) =
∫ φ

−∞ p(t)dt where φ ∈ [0,π]. If it

is assumed that φ(F) can be solved for (which is always the case when a PDF is discretized),

we can define the MRA of the mth beam according to

Φm = φ

(
m

M−1

)
(10)

where m∈
{

0, 1, 2, ... M−1
}

is the beam number when there are M beams to be steered.

The set of values in (10) will be referred to as our generalized cued beams.

B. Robust Capon Beamforming

The MVDR beamformer is also know as the Capon beamformer. As previously discussed,

the Capon beamformer has long been known to suffer from sensitivity to mismatch. Only

recently, though, have some authors derived beamformers that directly account for steering

vector uncertainty [4], [11], [12], [13]. The robust Capon beamformer (RCB) presented in [4]

is only slightly more computationally complex than the standard Capon beamformer. It’s added

complexity comes from an eigendecomposition of the N x N matrix BHR−1
x B (complexity O(N3))

and the solution of a Lagrange multiplier problem by the Newton-Raphson method (complexity

varies depending on precision desired). The derivation of the RCB is beyond the scope of this

paper, but the most important result is the beamforming weights,

wRCB(φ) =

(
Rx + 1

λ
BBH)−1 ā(φ)

āH(φ)
(
Rx + 1

λ
BBH

)−1 Rx
(
Rx + 1

λ
BBH

)−1 ā(φ)
, (11)

where ā(φ) is the mean steering vector and λ is the Lagrange multiplier solution to the optimiza-

tion problem (see [4] for intermediate steps). The N x L matrix B(φ)=
[

ā(φ)−a(φ1) ... ā(φ)−a(φL)
]

defines the uncertainty set for the steering vector where L is the number of samples of the array

response near the mean response ā(φ).

A couple important observations regarding (11) can be made. First of all, for exceedingly

large λ , lim
λ→∞

wRCB(φ) = wMV DR(φ). Second, if Rx is diagonally loaded as in Section II-A, then

lim
ε→∞

wRCB(φ) = wCBF(φ). The significance of these limiting cases will be discussed in Section
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VI.

C. Robust Capon Beamformer with Cued Beams

The RCB can naturally be extended to operate using the generalized cued beams given by

(10). Since the cued beam MRAs will typically be unevenly spaced, the uncertainty set, given

by matrix B, should also vary for each beam. More specifically, B should be constructed using

samples of the array response that are between the two adjacent MRAs. The midpoint between

two MRAs is a sufficient boundary for where to sample the array response for each beam. This

approach will essentially vary the beamwidth of each beam based on its distance from adjacent

beams, and, in doing so, help to ensure that the beams give a full coverage of bearing. Although

finely spaced beams will not cover every bearing, all directions will be covered by at least one

beam. If a contact is detected, the data fusion framework will trigger the cued beams to be steered

in that direction. The same likelihood function, (4), will be used for the cued RCB (henceforth

referred to as the CRCB) but with σ2
MV DR(φ) replaced with σ2

RCB(φ), the RCB power estimate.

V. PERFORMANCE ANALYSIS

Simulated data generated by the Sonar Simulation Toolset (SST) [14], [15] was used to assess

the effectiveness of the RCB and CRCB in comparison to previous approaches using MVDR

beamforming. The simulation involved a source 10 km away emitting a steady tone at 200 Hz,

a constant sound speed profile of 1500 m/s, and a 34 element HLA of length 45 m. The element

level SNR was -5 dB. The integrals in (8) and (9) were evaluated by simulating 500 sources

evenly spaced in bearing over 0 < θ < π , where θ = 0, π are along the line of bearing of the

HLA. In all cases the prior PDF was Gaussian with a mean of θ = π

2 . In addition, the generalized

cued beams given by (10) were used whenever cued beams were specified. Finally, the MVDR

plots are shown for the optimal level of diagonal loading.

There are a couple of important things to notice about Fig. 2. First, the cued beams always

outperform the corresponding surveillance beams for sufficiently narrow prior PDFs. That is,

there is greater expected entropy improvement and less expected DOA error. This is expected

because the finer spacing of MRAs should ensure that there is less mismatch between a beam
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Figure 2. Expected Entropy Improvement and DOA Error shown as a function of prior PDF standard deviation. The surveillance
beams were spaced uniformly in cos(φ) as is common practice in surveillance beamforming.

MRA and the true location of a contact. In addition, expected entropy improvement decreases

as the prior PDF becomes more narrow. This shows that there is a limit to the amount of

refinement that can be achieved. If the prior PDF width is comparable to the width of the beams

then further refinement cannot be obtained. Also notice that the performance of the cued beams

approaches that of the surveillance beams for wide prior PDFs. This is to be expected because

the cued beams should approach the spacing of the surveillance beams as the prior approaches a

uniform PDF. Another important observation is that the expected DOA error for cued beams is

actually worse than the surveillance beams for wider prior PDFs. This shows that cuing beams

can actually be disadvantageous when the prior PDF is not sufficiently narrow.

The final important observation is that the MVDR beamformers actually outperform the RCBs

in most cases. There are a few possible reasons for this. One is that there are different amounts

of noise in each beam of the RCB (and CRCB) because the beamwidths differ. This problem

was confirmed experimentally by observing peaks in the likelihood function at angles where the

beams were widest, even though no contacts were present in the specified direction. The problem

could be accounted for by weighting each beam’s output in relation to its beamwidth. In the

plots shown the RCB beams were weighted by a value inversely proportional to the beamwidth.

This method is admittedly ad hoc and is only being used until a method based more in theory
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is developed. Another reason for the poor performance of the RCBs is that the parameter γ in

(4) is SNR dependent. The value of γ essentially controls how much peaks in the beamformer

output are emphasized. Experiments showed that the RCBs demonstrated considerable sensitivity

to this parameter in comparison to MVDR beamforming.

VI. CONCLUSIONS AND FUTURE WORK

In order to measure the performance of the CRCB the expected entropy improvement and

expected absolute DOA error were analyzed. With respect to these measures, the new design did

not perform as well as the author had hoped. There is still much research to be done, though.

As previously mentioned, the CRCB beams should be weighted such that the noise gain is

uniform across beams. The parameter γ in (4) also needs to be optimally selected. In addition, it

would be informative to find the optimal number of samples of the array response, L, to use in

the uncertainty set given by matrix B of the CRCB. Given the proper choices for these design

parameters the CRCB could outperform the cued MVDR beamformer.

The performance measures presented here are for a very simple scenario. For example, there

are no interferers and the target is not moving. A fairer evaluation of performance would require

implementation in an actual data fusion framework. One aspect of the data fusion process that

was not discussed in this paper is the use of the posterior PDF resulting from one measurement

from the HLA as the prior PDF for a subsequent measurement. In other words, the passive

beamformer can be used in a feedback configuration, fusing prior measurements with current

measurements. Preliminary evaluation of this configuration has shown that the CRCB can provide

lower entropy measurements than the cued MVDR beamformer after multiple feedback iterations

(with similar DOA error). This is only true when the state estimate (given by the current posterior

PDF) is stationary in its mean. The MVDR beamformer and CBF, on the other hand, have been

observed to be robust to mean stationarity. That is, regardless of the shape and stationarity of

the prior PDF, the state estimate will eventually converge such that its mean corresponds to the

true DOA of the contact.

Although mean stationarity was not previously discussed, it is a parameter that can easily be

provided by a well structured data fusion framework. For a HLA it would correspond to the
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bearing rate, that is, the velocity in bearing of the DOA estimate. Future work regarding the RCB

therefore could involve decreasing its sensitivity in proportion to the bearing rate. This might

be done by increasing the factors ε and λ discussed in Section IV-B so that the RCB becomes

a detuned version that approaches the behavior of the MVDR beamformer or CBF. Future work

regarding cued beams might involve modifying the generalized cued beams strategy to take into

account the bearing rate. Specifically, there should be less emphasis on cuing the beams if the

bearing rate is high.

Finally, this paper has made it apparent that other performance measures need to be developed

to properly evaluate the effectiveness of a beamformer when used in data fusion. These would be

required for both the feedback configuration discussed and for cases when active sonar sensors are

added to the data fusion. Some of these measures might include state convergence rate, minimum

detectable level (in terms of SNR), minimum achievable entropy, and minimum achievable DOA

error.
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