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Abstract

Computer algebra systems can be used to perform analyses requiring extensive algebraic

manipulation and provide a means of performing precise mathematical explorations that are

impractical if done by hand. The ability to graphically display results makes these systems

useful also as educational aids and for demonstrating non-intuitive mathematical relationships in

particular. In this paper, we use the Georgia Tech Signal Processing Packages forMathematica to

illustrate the problem of reconstruction from parallel-line projections. Derivations of two general

solutions of the Radon inversion are presented, demonstrating the utility of computer algebra

systems for communicating advanced mathematical concepts.
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1 Introduction

Computers have long been used by scientists, engineers, and mathematicians for the solution of nu-

merical problems requiring more calculations than can be reasonably performed by hand. Computer

algebra systems allow them to also be used to solve problems involving extensive manipulation of

symbolic expressions, thereby facilitating a class of investigations that were previously impractical.

Symbolic analysis o�ers a level of precision not possible with numerical computation because mathe-

matical expressions are stored and manipulated in an unevaluated symbolic form, thereby maintaining

in�nite precision throughout processing.

Not only are computer algebra systems useful for problem solving, but they have also been rec-

ognized as important tools for education:1 One important aspect of their educational value is the

facilitation of exploring and demonstrating non-intuitive mathematical relationships. One such non-

intuitive, yet extraordinarily useful, mathematical relationship is the Radon inversion formula for

reconstruction from parallel projections. Simply put, Radon inversion is the mathematical process

by which a multidimensional function is found exactly when only straight line integrals across it are

known. The physical analogue of this process, tomography, is likewise the process of determining the

internal structure of an object by the analysis of radiation that has passed through it. Many computed

tomography (CT) systems based upon a discretization of this reconstruction problem have been built

and widely used with great success. However, fundamental constraints on realizable systems require

that the conditions for perfect reconstruction be compromised. Consequently, much research e�ort

has been expended in attempts to bring the performance of these systems as close as possible to the

mathematical ideal.

Numerical simulations of the techniques available for approximating ideal reconstruction have

been presented in the literature, but analytic derivations have generally been omitted due to their

algebraic complexity. Computer algebra systems present an environment in which such analytic

formulations can be generated, allowing ideal mathematical reconstructions to be compared with

proposed implementations. Further, when a computer algebra system is used the results at each step

of the reconstruction may be inspected and displayed graphically, so that the e�ects of the various

operations (such as projection or discretization) can be readily demonstrated for educational purposes.

This article presents the application of Georgia Tech Signal Processing Packages for Mathematica2
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to the reconstruction of functions from parallel-line projections and demonstrates its utility, and

that of computer algebra systems in general, for the exploration and demonstration of advanced

mathematical relations.

2 Mathematica and the SPP

Mathematica is a commercially available computer algebra system that o�ers a wide range of math-

ematical functions as well as a powerful programming language:3 The programming language pro-

vides support for several high-level programming paradigms including procedural, functional, object-

oriented, and rule-based constructs. The Georgia Tech Signal Processing Packages for Mathematica

(SPP)4;5 were developed using this language and provide tools for the representation and analysis

of both continuous and discrete multidimensional signals and systems. While its development still

continues, the SPP currently o�ers 16 signal functions and 30 operators. The analyses presented

in this paper utilize new capabilities of the SPP to perform forward and inverse continuous-time

multidimensional Fourier transforms, as well as continuous-time symbolic convolution:6

A public domain version of the SPP is available via anonymous Internet ftp7 from gauss.eedsp.

gatech.edu (Internet Protocol address 130.207.224.26). They reside in the Mathematica/ directory

in compressed UNIX tar format (SigProc2.0.tar.Z at the time of publication), zip format for the

IBM PC running Windows (SigProc2 IBM PC.zip), and binhexed self-extracting Macintosh archive

format (SigProc2.0.mac.sea.hqx). Downloading and installation instructions may be found in the

README �le in the same directory.

This paper presents some expressions that were used as input to Mathematica to perform the

mathematical operations discussed in the text. These are shown in Courier type and were evaluated

on a NeXT cube using Mathematica version 2.0 with the SPP version 2.9. The �gures accompanying

this paper were generated by Mathematica.

3 Reconstruction from Parallel-Line Projections

In a variety of scienti�c situations we wish to determine the internal structure of an object but are

unable to examine its interior directly. Such situations arise in the �elds of astronomy, medicine,
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geophysics, microscopy, manufacturing, and others, and can often be solved using tomography. To-

mography is a process by which the internal structure of the object is determined indirectly by

examination of the residual intensity of a radiation that has passed through it. Successful application

of tomography requires that this radiation be attenuated in a manner proportional to the variations

of interest within the structure.

The practice of tomography has its theoretical basis in the mathematical problem of reconstructing

a n-dimensional function when only its (n � 1)-dimensional projections are known. Projections are

de�ned as line integrals across the extent of the function. Several projection geometries have been

studied, but we concern ourselves here with projections taken along parallel lines, as illustrated in

Fig. 1. The problem of inverting the projection process to reconstruct the original function was �rst

solved by J. Radon8 in 1917 as a purely theoretical problem. It was later solved independently by

R. Bracewell in 1956 with application to radio astronomy9 and A. Cormack in 1963 with application

to medical imaging.10 In this section, we present their methods of performing reconstructions from

parallel projections and then show how they can be illustrated using the SPP.

3.1 Convolution Back-Projection Method of Reconstruction

Consider parallel projections of the two-dimensional function f(x1; x2) taken at various rotational

orientations. The orientation of each projection can take the form of a change of variables from

(x1; x2) into (u1; u2) according to

u1 = x1 cos � + x2 sin � (1)

u2 = �x1 sin � + x2 cos � (2)

A projection (or Radon transform) of f(x1; x2) at orientation � is then

p�(u1) =
Z
1

�1

f(u1; u2)du2 (3)

Using the original Radon inversion,8 when its projections are known continuously for 0 � � < �, the

function f(x1; x2) can be exactly reconstructed by

f(x1; x2) =
1

2�

Z �

0
g�(x1 cos � + x2 sin �)d� (4)
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where

g�(t) = �
1

�

d

dt

Z
1

�1

p�(� )

t� �
d� (5)

Equation (5) de�nes the �ltered projection function g�(t). It is the derivative of the Hilbert transform

of the projection at angle �. f(x1; x2) is reconstructed from g�(t) by rotating it to the angle � and

back-projecting it across the (x1; x2) plane. The process described by equations (4) and (5) is called

convolution back-projection and is illustrated in the section entitled \Convolution Back-Projection

Using the SPP."

While the Radon inversion reconstructs the original function exactly, it is not directly imple-

mentable because it requires that projections be taken across a continuous range of angles and that a

convolution of in�nite extent be performed. Due to the derivative operation, it is also highly sensitive

to noise. Thus, alternate solutions have been developed, one of which we introduce next.

3.2 Filtered Back-Projection Method of Reconstruction

An alternate approach to solving the reconstruction problem was derived by R. Bracewell who de-

veloped a Fourier space formulation of the Radon inversion.9 The Fourier transform of the Radon

transform of f(x1; x2) taken at � = 0 is

P0(!1) =
Z
1

�1

p0(x1)e
�j!1x1dx1

=
Z
1

�1

Z
1

�1

f(x1; x2)e
�j!1x1dx1dx2 (6)

Comparing this to the Fourier transform of f(x1; x2)

F (!1; !2) =
Z
1

�1

Z
1

�1

f(x1; x2)e
�j(!1x1+!2x2)dx1dx2 (7)

we see that

P0(!1) = F (!1; !2)j!2=0 (8)

An orthogonal change of the variables of a function produces an identical change of variables in the

Fourier transform of that function. Since rotation is an orthogonal transformation, we can generalize

this result as

P�(�1) = F (�1; �2)j�2=0 (9)

5



where

�1 = !1 cos � + !2 sin � (10)

�2 = �!1 sin � + !2 cos � (11)

Equation (9) is called the projection-slice theorem and shows that the Fourier transform of each

projection of a function is identical to an axial slice of the multidimensional Fourier transform of the

function taken through the origin at the angle of projection.

The function f(x1; x2) can be reconstructed in Fourier space by converting the convolution back-

projection to a Fourier space operation. The Fourier space equivalent of the derivative of the Hilbert

transform of the projection is

G�(�1) = j�1jP�(�1) (12)

j�1j is typically called the Radon �lter. Using equations (9) and (12), the reconstruction formulae (4)

and (5) can be written in the Fourier domain as

f(x1:x2) =
1

4�2

Z �

0

Z
1

�1

G�(�1)e
j�1(x1 cos �+x2 sin �)d�1d�

=
1

4�2

Z �

0

Z
1

�1

j�1jP�(�1)e
j�1(x1 cos �+x2 sin �)d�1d� (13)

which is the Fourier space inversion formula for exact reconstruction.

3.3 Convolution Back-Projection Using the SPP

The SPP operator CPulse[ 1, x1^2+x2^2 ] de�nes a circle at the origin of \density" and radius 1.

By successively applying the ScaleAxis, RotateAxes, and Shift operators, we can transform this

circle into an ellipse of arbitrary size, position, and orientation.

ellipse = Shift[ fx1o, x2og, fx1,x2g ][

RotateAxes[ -thetao, fx1, x2g ][

ScaleAxis[ f1/x1s, 1/x2sg, fx1, x2g ][

CPulse[ 1, x1^2 + x2^2 ] ] ] ]

Fig. 2 shows a plot of this function with center at (2; 3), major axis length 2, minor axis length 1,

and orientation of �

3
radians about its center. We will now illustrate the convolution back-projection

method of reconstructing this function from its projections.
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The projection function p�(u1) (which we shall call pellipse) of the generalized ellipse function

can be found using the projection-slice theorem. It is the inverse Fourier transform of an axial slice

of the two-dimensional Fourier transform of ellipse. This is derived in the SPP with

pellipse =

SPSimplify[

InvCTFTransform[

(TheFunction[ RotateAxes[theta,fk1,k2g][

TheFunction[ CTFTransform[ ellipse,

fx1,x2g, fk1,k2g ] ] ] ] /. k2->0) //.

(* Apply a few non-standard simplifications. *)

fSqrt[a ^2 b ] :> Abs[a] Sqrt[b],

1/Sqrt[a ^2 b ] :> 1/(Abs[a] Sqrt[b]),

(a t +b t ) :> (a+b) tg,

k1, u1 ], Variables->u1 ]

Fig. 3 is a plot of pellipse versus theta. It depicts the variation in the projection function as

projections are taken at di�erent angles. It is interesting to note that the path taken by the projection

of the ellipse is sinusoidal, as we would expect from the projection of a rotating object onto a �xed

axis.

Reconstruction of the original ellipse by convolution back-projection requires two distinct steps.

First, the back-projection function g�(t) (which we'll call gellipse) is derived from p�(u1). Following

equation (5), g�(t) is the derivative of the Hilbert transform of the projection function.

gellipse = D[ CTPiecewiseConvolution[ pellipse /. u1->t,

1/t, t ], t ]

Fig. 4 shows the �ltered projection function gellipse. The �ltered projection function varies with

theta in a manner similar to the projection function.

The original ellipse may now be reconstructed from gellipse using the back-projection integral

of equation (4). This operation is best explained graphically. Each angle of � contributes one back-

projection to the total function, where each back-projection consists of aligning the one-dimensional
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function g�(t) in the (x1; x2) plane along the x1 axis, \projecting" it in both directions along the x2

axis, and rotating both axes about the origin by the angle �. Fig. 5 shows the back-projection of g�(t)

at � = 0 (note that this back-projection actually extends to both plus and minus in�nity along the

x2 axis). The reconstruction consists of the continuous summation (integration) of all of the back-

projections of g�(t) for 0 � � < �. This is di�cult to evaluate analytically because of the rotation

of the coordinate system across back-projections. It is also an operation that cannot be precisely

implemented because only a �nite set of projections may be taken of a physical object. When the

back-projection function is only known for a discrete set of angles, the reconstruction integral must

be approximated by weighting the measurements with the di�erence between the angles �i for which

projections have been taken:11 Equations (14)-(16) de�ne this reconstruction.

��0 , �0 � �N�1 + � (14)

��i , �i � �i�1; 1 � i � N � 1 (15)

f(x1; x2) =
1

2�

N�1X
i=0

��ig�(x1 cos �i + x2 sin �i) (16)

The function recon[ g, N ], shown below, implements the summation of equation (16) for N discrete

back-projections of the function g equally spaced between 0 and �.

recon[ g , N ] := Sum[ RotateAxes[ -theta, fx1,x2g ][ g ],

f theta, 0, Pi - Pi/N, Pi/N g ] / (2 N)

We can use this function to perform approximate reconstructions of the ellipse (Fig. 2) by using the

back-projection function gellipse as parameter g. Fig. 6 shows such reconstructions using 2, 4, 8,

and 16 projections.

3.4 Filtered Back-Projection Using the SPP

We now present a second example of reconstruction from ideal projections, this time using the �ltered

back-projection method of reconstruction. We begin by de�ning an arbitrary Gaussian function,

gauss, in much the same manner as we de�ned an arbitrary ellipse to illustrate the convolution

back-projection technique.
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gauss =

Shift[ fx1o, x2og, fx1, x2g ][

RotateAxes[ -thetao, fx1, x2g ][

ScaleAxis[ f1/x1s, 1/x2sg, fx1, x2g ][

Exp[ -(x1^2 + x2^2) ] ] ] ]

Fig. 7 shows an instance of this arbitrary Gaussian function with scaling of 2 in the x1 dimension,

rotation of �

3
radians about the origin, and translation so its center is at (2; 3).

As before, we will reconstruct the original function from its projections. The �ltered back-

projection method operates in the Fourier domain, so we �rst calculate the Fourier transform of

the projection function. The projection-slice theorem tells us that it is equal to an axial slice of the

Fourier transform of the original signal. This slice P�(�1) (which we'll call Pgauss) is derived in the

SPP using

Pgauss =

Simplify[

TheFunction[

RotateAxes[ theta, fk1, k2g ][

TheFunction[

CTFTransform[ gauss, fx1, x2g, fw1, w2g ]

] /. fw1->k1,w2->k2g

]

] /. k2->0

(* Perform a non-standard simplification. *)

] //. (a t + b t ) :> (a + b) t

Fig. 8 shows Pgauss for the Gaussian function of Fig. 7 and is plotted as the angle of slicing, theta,

varies from 0 to �. The Fourier transform of a shifted Gaussian is a modulated (and scaled) Gaussian,

so we see only slight variations in the frequency slices as we vary the angle.

To reconstruct from this, we �rst apply the Radon �lter in Fourier space and take the inverse

Fourier transform to generate the back-projection function ggauss by

9



ggauss = InvCTFTransform[ Abs[k1] Pgauss, k1, u1,

Simplify->False

] /. u1->x1

This operation corresponds to the inner integral of equation (13). Note that ggauss corresponds

directly to the �ltered back-projection function g�(t) of the convolution back-projection derivation.

ggauss is shown (versus theta) in Fig. 9.

The outer integral of equation (13) performs a back-projection analogous to equation (5) in the con-

volution back-projection derivation; that is, it integrates the rotated back-projections to reconstruct

the original function. We can again use the recon function to approximation this ideal reconstruction

and generate reconstructions from ggauss using only a �nite number of projections. Fig. 10 shows

reconstructions of the Gaussian function of Fig. 7 using 2, 4, 8, and 16 projections.

4 Noise in Reconstructions

Comparing Fig. 6 with Fig. 10, we see that for a given number of projections the quality of our recon-

structions varies greatly. Convolution back-projection and �ltered back-projection are mathematically

equivalent processes and the operations performed in our derivations here are mathematically ideal,

so this variation cannot be attributed to the methods of analysis.

The di�erence in reconstruction quality is due to the frequency composition of the two func-

tions to use in our examples. The elliptically shaped function contains an appreciable amount of

high-frequency energy, due to its discontinuous nature, and the Gaussian function contains negligible

high-frequency components. The reconstruction processes described here perform either a derivative

operation or frequency-domain Radon �ltering, both of which amplify high-frequency signals enor-

mously. When we reconstruct using only a �nite number of projections, we introduce error in our

function at all frequencies present in the signal. In the case of the Gaussian this error occurs in the

relatively harmless low-frequency region, but in the ellipse it introduces a great deal of high-frequency

noise.

CT implementations process sampled, thus band-limited, projections, and therefore do not intro-

duce high frequency noise in this way. Nevertheless, they have noise problems of their own due to
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aliasing of high-frequencies in the sampled projections and noise sensitivity introduced during the

physical projection and sensing processes. Mathematical treatments of these noise e�ects in recon-

struction can be found in the literature:12

5 Conclusions

The primary goal of this paper is to show the capabilities of computer algebra systems for demon-

strating abstruse mathematical relationships. We have used a computer algebra system to present

two generalized analytic solutions to the problem of reconstruction from parallel projections. The

mathematical expressions derived in these two examples are too long and unwieldy to immediately

apprehend|or publish|so we have relied on the graphical powers of Mathematica for their illustra-

tion.

We have also demonstrated how the ability to manipulate extremely large expressions, coupled

with the maintenance of in�nite mathematical precision, sets symbolic computation apart from more

traditional methods of computer-based mathematical analysis. The Mathematica computer algebra

system, supplemented with the Georgia Tech Signal Processing Packages, provides a rich set of tools

for performing symbolic signal analysis and further investigations into multidimensional problems

such as reconstruction from projections.

Our examples of reconstructing mathematical models of simple geometric �gures can be extended

to more complex scenarios. One such �gure that we have analyzed is the Shepp-Logan head phantom

(Fig. 11) which approximates the structure of the human head (including several simulated tumors)

with a set of ellipses:13 Other avenues of study facilitated by this system include the development of

alternate reconstruction �lters for improving reconstruction quality when a �nite number of projec-

tions are used and the reconstruction of three-dimensional objects from two-dimensional projections.

Symbolic analysis allows the performance of alternate �lters to be analytically compared with that of

the mathematical ideal and also enables the direct extension of formulae into higher dimensions. The

SPP provides ample capabilities for the investigation of these topics.

Of practical importance to users of this system is its interactive performance. The example

derivations presented in this paper were performed on an original NeXT cube with a Motorola 68030

CPU and 68882 FPU running at 25 MHz and 16 MB of RAM. The symbolic result from each example
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takes between a few seconds and a few minutes to produce. Generating plots of the reconstruction

formulae (Figs. 6 and 10) takes longer, with each requiring about an hour to render. This is because

the approximate reconstruction formula, equation (16), produces a large symbolic expression which

must be evaluated numerically at many points to generate the �gures. Plots of this kind may be

generated once and saved on a mass-storage device to be reloaded later for quick display.

The primary limitation imposed on the use of this system is the same as that which is often faced in

traditional mathematical analysis; the intractability of many integral equations. Although this system

can integrate impressive expressions, there remain many that it cannot. Success in the evaluation of

any particular integral transform will depend on the creativity of the researcher in formulating the

expression, and the quality of the integration knowledge-base of the symbolic mathematics system in

use. The SPP extends Mathematica's knowledge-base with integration rules for the signal processing

operators that it de�nes and allows new rules to be added by the user.
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Figure Captions

Figure 1: Parallel projections of an object are taken by integrating along parallel lines as shown.

Figure 2: Plot of ellipse with center at (2; 3), major axis length 2, minor axis length 1, and rotated

about its center by �

3
radians.

Figure 3: Projection of the ellipse of Fig. 2 for 0 � � < �.

Figure 4: Projections of Fig. 3 after Radon �ltering.

Figure 5: Filtered projection at � = 0 back-projected across the (x1; x2) plane.

Figure 6: Reconstruction of the ellipse in Fig. 2 using 2, 4, 8, and 16 back-projections.

Figure 7: Plot of gauss scaled by 2 in the x1 dimension and rotated by �

3
radians about its center,

which is translated to (2; 3).

Figure 8: Slices of the Fourier transform of the Gaussian function of Fig. 7 taken at for 0 � � < �.

Figure 9: Projections of Fig. 8 after Radon �ltering.

Figure 10: Reconstruction of the Gaussian function in Fig. 7 using 2, 4, 8, and 16 projections.

Figure 11: A commonly used model of the interior of the human head that can be analyzed using the

system described in this paper.

14


