
UNIVERSITY OF TEXAS AT AUSTIN

Dept. of Electrical and Computer Engineering

EE382C-9 Embedded Software Systems

Problem Set #1:

Languages, Digital Signal Processors, Object-Oriented Software, Filters

Date assigned: February 17, 2004

Date due: February 25, 2004

Late homework will not be accepted.

Reading: Languages for Embedded Systems, ch. 1 and ch. 5{9

You may use any computer program to help you solve these problems, check answers, etc.

Please submit your homework solutions to the grader (Mr. Ming Ding) by e-mail at

ming@ece.utexas.edu. You must submit the source code and make�le for problem 1.4 by

e-mail to Mr. Ding. Mr. Ding's work number is 512-232-2769.

Problem 1.1 Languages for Embedded Systems. 15 points.

(a) What is nondeterminism?

(b) When does nondeterminism arise? Give one example. On the course Web page for

the second lecture, I list the following two examples of non-determinism given by Prof.

Edward Lee at UC Berkeley (so you may not use them as answers for this question):

i. User interfaces require nondeterminism. For example, mouse clicks and keyboard

presses are events that can be arbitrarily interleaved when sent to a handler.

ii. Real-time applications also often require nondeterminism. Interrupts [esp. prior-

itized interrupts] are a usual way of managing this.

(c) What are the advantages and disadvantages of supporting nondeterminism in a com-

puter language?

Problem 1.2 Digital Signal Processors. 15 points.

Pick a VLIW digital signal processor and a desktop general-purpose processor, and list

�ve di�erences in their instruction set architectures.

Problem 1.3 Evaluation of Object-Oriented Programming. 10 points.



Name �ve advantages and �ve disadvantages of object-oriented programming. Your an-

swers should not be based on a particular object-oriented language, such as C++ or Java,

but instead should be more general.

Problem 1.4 Digital Finite Impulse Response Filter C++. 30 points.

Digital �nite impulse response (FIR) �lters are widely used in audio, image, video, and

communication systems. Given an input signal, x[k], where k is the discrete-time sample

index, the output signal, y[k], of an FIR �lter can be written as a discrete-time convolution

as follows:

y[k] =
N�1X

n=0

a[n] x[k � n]

The coeÆcients fa[0]; a[1]; : : : ; a[N�1]g are typically designed o�-line, e.g. using the filtdemo
command in Matlab, to meet a certain set of speci�cations, e.g. on magnitude frequency re-

sponse. We can store the coeÆcients (a.k.a. taps) in a linear array of N words.

In the summation, the terms fx[k]; x[k � 1]; : : : ; x[k � (N � 1)]g represent the current

input and the N�1 previous inputs. By storing these input terms in a circular bu�er, we can

eÆciently update the circular bu�er as a new input data arrives to be processed (�ltered).

An FIR �lter has memory because it \remembers" N � 1 previous input values.

In this problem, you will implement an FIR �lter using object-oriented programming in

C++. All data members in the C++ classes that you write should be private. The only

visible access to the data members from the outside should therefore be through methods.

All numeric data are integers. The C++ source code needs to compile using version

2.95.2 of the GNU C++ compiler (g++) installed on the Sun Solaris 2.8 ma-

chines sun�re1 and sun�re2 in the ECE Learning Resource Center. No Microsoft

Foundation Classes may be used.

(a) Develop a C++ class to implement a circular bu�er. The constructor should take

an integer argument that is the length of circular bu�er. The values of the circular

bu�er should be initialized to zero. De�ne a method addValue to add a new value

to the circular bu�er. Overwrite the oldest data value with the new value. De�ne a

method readValue to read an element from the circular bu�er given an index into the

circular bu�er. This method should support modulo addressing. De�ne the appropriate

destructor.

(b) Develop a C++ class to implement an FIR �lter. The constructor should take two

arguments: an integer number of the number of coeÆcients, and an array of coeÆcient

values. The coeÆcient values should be copied. A circular bu�er of zero values of length

equal to the number of coeÆcients should be allocated. De�ne a method outputValue

to compute a new output value given a new input value. De�ne the appropriate

destructor.



(c) Write a main program to �lter a short signal. Use the �lter coeÆcients f�1;�2;�3;�2;�1g.
For the input signal, initially use f1; 2; 3; 4g. Stream the data into the �lter one sample

at a time. (This \streaming" is what a scheduler would do if the FIR �lter were for

example in a block diagram representation such as synchronous data
ow.) When the

input stream is �nished, stop the program.

(d) Update your main program to �lter a long signal. Use the same �lter coeÆcients

f�1;�2;�3;�2;�1g. Generate a long array of 100,000 elements that holds the values

1, 2, : : :. Time the execution. Get the start time with a resolution of at least 1 msec.

When the input stream is �nished, get the stop time with a resolution of at least 1

msec. Do not include the time to initialize this array in the execution time. Report

the execution time. If you are on a multiuser system, then also report the load (in

Unix, you could use the uptime command).

Problem 1.5 Digital Finite Impulse Response Filter in Java. 30 points.

Repeat problem 4 in Java. The Java code must compile under JDK 1.3, which is installed

on the Sun Solaris 2.6 machines in the Learning Resource Center. As much as possible, try to

make the Java version a direct port of your C++ code in Java. You will not need to de�ne a

�nalize method (which performs many of the tasks that a destructor in C++ would perform)

for the new classes. For part (d), be sure to run the C++ and Java versions on the same

machine. In addition, compare the execution times of the C++ and Java implementations

found in part (d) after normalizing for the load on the machine at the time of execution.


