
THE UNIVERSITY OF TEXAS AT AUSTIN

Modern Methods and Tools for
Signal Processing System Design

Prof. Brian L. Evans

Embedded Signal Processing Laboratory
Dept. Electrical & Computer Engineering

The University of Texas at Austin
Austin, TX 78712-1084

http://signal.ece.utexas.edu/

THE UNIVERSITY OF TEXAS AT AUSTIN

Outline

• Introduction to system-level design

• Heterogeneity in algorithms, design methods, implementation technologies

• Algorithm development environments

• Quick prototyping of sequential algorithms

• Block diagrams

• Formal modeling of computation and communication in algorithms

• Synthesis of software for digital signal processors

• Optimal scheduling of multirate signal processing subsystems

• System-level design environments

• Design assistance for mapping block diagrams into implementations

• Conclusion

THE UNIVERSITY OF TEXAS AT AUSTIN

Introduction to System-Level Design

• New standard for speech/audio compression, image/video
compression and mobile communications each year

• Heterogeneity in implementation technologies

• Dedicated and configurable hardware

• Dozens of high-volume programmable processors introduced each year

(general-purpose processors, digital signal processors, microcontrollers)

• Heterogeneity in specification languages

• Two dominant hardware description languages (VHDL and Verilog)

• Revolution in high-level languages every 10 years (Fortran, C, C++, Java)

• Increasing complexity in implementation technologies

• Moore’s Law: Number of transistors on a chip doubles every 18 months

• Networked, distributed, and multiprocessor systems

THE UNIVERSITY OF TEXAS AT AUSTIN

Embedded Signal Processing Systems

control panel

ASIC microcontroller

real-time
operating

system

controller
process

user interface
process

system bus

DSP
assembly

code

programmable
DSP

host port

memory interface

programmable
DSP

host port

memory interface

dual-ported memory

CODEC

DSP
assembly

code

analog
interface

Heterogeneity in algorithms, design
methods, and implementation technologies

FPGA

Sl
id

e
by

 P
ro

f.
 E

dw
ar

d
A

. L
ee

, U
C

 B
er

ke
le

y.
 U

se
d

by
 p

er
m

is
si

on

THE UNIVERSITY OF TEXAS AT AUSTIN

Handling Heterogeneity in System-Level Design

• Raise the level of abstraction

• More possibilities to map functionality and behavior to lower levels

• Better reuse of existing designs

• Software subsystems

• Abstraction: assembly, high-level languages, language-independent spec.

• Lessons: object-oriented design, compilers lag behind processor architecture

• Hardware subsystems

• Abstraction: transistor, cell library, hardware description languages

• Lessons: timed and untimed simulation important, synthesis maturing

• System specification should be an abstraction of hardware
and software specification to avoid implementation bias

THE UNIVERSITY OF TEXAS AT AUSTIN

Heterogeneity in a System-Level Design Flow

FSM
discrete

event

cosimulation

logic
model

cosimulation

execution
model

system-level modeling

synthesis

detail modeling and simulation

ASIC
model

execution
model

ASIC
synthesis

software
synthesis

partitioning

compiler
logic

synthesis

symbolic

imperative dataflow

Sl
id

e
by

 P
ro

f.
 E

dw
ar

d
A

. L
ee

, U
C

 B
er

ke
le

y.
 U

se
d

by
 p

er
m

is
si

on

THE UNIVERSITY OF TEXAS AT AUSTIN

Algorithm Development Environments

• Reduces development time

• Abstracts compile-and-debug loop (portability across multiple platforms)

• Visualization of results

• Domain-specific extensions

• Imperative languages (Matlab, Interactive Data Language)

• Vector computation exposes parallelism in a single computation

• Imperative nature hides parallelism in overall computation

• Imperative nature hides dependencies between functions (communication)

• Graphical languages (Labview, Khoros, Simulink)

• Exposes parallelism and dependencies between functions exposed

• Efficiency depends on models of computation and communication used

THE UNIVERSITY OF TEXAS AT AUSTIN

Algorithm Development Environments

• All support 8/16/32 bit integer data, single/double precision
floating-point numbers, and data structures defined by user

• Image processing example: log10(1 + |FFT(image)|)

Matlab Interactive Data Language

Commands interpreted (compiler available) compiled

Visualization signal/image/video plots tailored for large data sets

Applications signal and image processing,
optimization, and controls

biomedical, remote sensing,
seismic, and video imaging

Visual interface Simulink and Stateflow Envi

Labview Khoros

Commands interpreted (compiler available) interpreted

Visualization limited signal/image/video plots and
large data sets

Applications test/measurement, automation image and video processing

Block diagram dataflow language (G) dataflow and control flow

THE UNIVERSITY OF TEXAS AT AUSTIN

Imperative Algorithm Development Environments

file_id = fopen(‘mandrill’, ‘r’);
fsize = [512, 512];
[I1, count] =

fread(file_id, fsize, ‘unsigned char’);
fclose(file_id);
I1=I1’;
figure, image(I1);
axis off, axis square, colormap(gray(256))
map = 0:1/255:1;
map = [map’, map’, map’];
imwrite(I1, map, ‘mandrill.tiff’, ‘tiff’)
I2 = fft2(I1);
I2 = abs(I2);
I2 = log10(I2 + 1);
range = max(max(I2)) - min(min(I2));
I2 = (255/range) * (I2 - min(min(I2)));
I2 = fftshift(I2);
figure, image(I2);
axis off, axis square, colormap(gray(256))
imwrite(I2, map, ‘mandrillFFT.tiff’, ‘tiff’)

Matlab Code

file1 = ‘mandrill’; lun = 1;
openr, lun, file1
pic = bytarr(512, 512)
readu, lun, pic
close, lun
picr = rotate(pic, 7)
tiff_write, ‘mandrill’, pic
window, 0, xsize=512, ysize=512, title=’image’
tvscl, picr, 0, 0
picrf = fft(picr, -1)
picrfd = abs(picrf)
picrfd = alog10(picrfd + 1.0)
range = max(picrfd) - min(picrfd)
picrfd = ((255 / range) * (picrfd - min(picrfd)))
picrfd = shift(picrfd, 256, 256)
tiff_write, ‘mandrillFFT.tiff’, picrfd
window, 1, xsize=512, ysize=512, title=’fft’
tv, picrfd, 0, 0
return

IDL Code

THE UNIVERSITY OF TEXAS AT AUSTIN

Graphical Algorithm Development Environments

Labview

Khoros

Web sites
Mathworks
www.mathworks.com
IDL
www.rsinc.com

Labview
www.natinst.com
Khoros
www.khoral.com

THE UNIVERSITY OF TEXAS AT AUSTIN

Properties of Block Diagrams

• Modular
• Large designs are composed of smaller designs

• Modules encapsulate specialized expertise

• Hierarchical
• Composite designs themselves become modules

• Modules may be very complicated

• Concurrent
• Modules logically operate simultaneously

• Implementations may be sequential or parallel or distributed

• Abstract
• Interaction of modules occurs within a “model of computation”

• Many interesting and useful models of computation have emerged

• Domain Specific
• Expertise encapsulated in models of computation and libraries of modules

THE UNIVERSITY OF TEXAS AT AUSTIN

Formal Modeling of Computation and Communication

• Models of computation

• Coordinate computation of and communication between subsystems

• Ideally unbiased towards implementation in hardware and software

• Map be mapped onto a variety of implementation technologies

• Hierarchical combination forms heterogeneous systems

Subsystem Model of Computation

speech/audio processing dataflow (1-D)

image processing dataflow (1-D/2-D)

image/video resampling dataflow (m-D multirate)

user interface synchronous/reactive

communication protocols finite state machine

digital control dataflow

scalable descriptions process networks

THE UNIVERSITY OF TEXAS AT AUSTIN

Specification Using Hierarchical Block Diagrams

• Attach meaning to graphs

• Example: cellular phone

Dataflow

Discrete-Event

Finite State
Machine

THE UNIVERSITY OF TEXAS AT AUSTIN

System Simulation and Synthesis

• Two sides of the same coin

• Simulation: scheduling then execution on desktop computer(s)

• Synthesis: scheduling then code generation in C++, C, assembly, VHDL, etc.

• Models of computation enable

• Global optimization of computation and communication

• Scheduling and communication that is correct by construction

Model of
Computation

Global
State

Type of
Comm.

Type of
Scheduling

Optimal
Scheduling

Simulation
Speed

synchronous dataflow finite asynch static n3 fast

Boolean dataflow infinite asynch quasi-static infinite medium

process networks infinite asynch dynamic infinite medium

finite state machine finite either static not poly. fast

synchronous/reactive finite synch static n2 fast

discrete event infinite synch dynamic infinite very slow

THE UNIVERSITY OF TEXAS AT AUSTIN

System Simulation and Synthesis

• Design space (global state)

• Finite, e.g. finite state machine, synchronous dataflow, synchronous/reactive

• Infinite, e.g. imperative programming, Boolean dataflow, process networks

• Worst-case optimal scheduling time

• Finite time if design space is finite, and infinite time if design space is infinite

• Infinite-time off-line scheduling is impractical: use heuristics (e.g. compilers)

• Process networks on-line scheduling takes infinite time but bounded memory

• Use models of computation with finite state when possible

• Enables formal analysis (consistency, deadlock, boundedness, verification)

• Suitable for fixed topologies (VLSI and embedded software implementations)

• Validation by simulation important throughout design flow

THE UNIVERSITY OF TEXAS AT AUSTIN

Dataflow Models of Computation

• Matched to data-intensive processing, local communication

• A signal is a sequence of tokens (samples)

• An actor maps input tokens onto output tokens

• A set of firing rules specify when an actor can fire

• A firing consumes input tokens from and produces output
tokens on FIFO queues with one writer and many readers

enabled

• •

fired enabled

• •

•

fired

•

THE UNIVERSITY OF TEXAS AT AUSTIN

Synchronous Dataflow

DOWNSAMPLEDOWNSAMPLE

UPSAMPLEUPSAMPLE

ENABLED FIRED

ENABLED FIRED

1 1

1

1

1

2

2

• Firing rules [Lee&Messerschmitt, 1986]

• An actor is enabled when enough tokens
are available at all of the inputs

• When an actor executes, it produces and
consumes same fixed amount of tokens

• Flow of data through graph may not

depend on values of data

• Scheduling

• Control flow predictable at compile time

• Performed once, repeatedly executed

• Multirate signal processing

• Infinite streams of data

• FIR filtering, FFTs, and resampling

enabled fired

enabled fired

THE UNIVERSITY OF TEXAS AT AUSTIN

Scheduling Synchronous Dataflow Graphs

A B C
O1 O2 O3I3I2I1

• Load balance production and consumption of tokens by
finding smallest integers in balance equations

• Schedule actor firings according to data dependencies until
repetitions have been met for all actors

• Balance equations have no solution if graph is inconsistent

ri

rAO1 rBI2=

rBO2 rCI3=

ri

A B C
1 1 1 1

2
1 Sl

id
e

by
 P

ro
f.

 E
dw

ar
d

A
. L

ee
, U

C
 B

er
ke

le
y.

 U
se

d
by

 p
er

m
is

si
on

THE UNIVERSITY OF TEXAS AT AUSTIN

Many Possible Synchronous Dataflow Schedules

A B C
20 10 20 10

A produces 20 tokens.
B consumes 10 tokens and
produces 20 tokens.
C consumes 10 tokens.

• Load balancing

• Linear-time linear-space algorithm in size of synchronous dataflow graph

• Periodic schedule: fire A 1 time, B 2 times, and C 4 times

• Scheduling data dependencies on a uniprocessor

• Second schedule has smallest code size and data size

Scheduler Schedule Buffer Size

List ABCBCCC 50

Looped A (2 B(2 C)) 40

Looped A (2 B)(4 C) 60

Looped A (2 BC)(2 C) 50

• List scheduling:

quadratic-time algorithm

• Looped scheduler:

cubic-time algorithm

THE UNIVERSITY OF TEXAS AT AUSTIN

Software Synthesis of Synchronous Dataflow Graphs

• Features of conventional digital signal processors (DSPs)

• Limited, separate, on-chip data and program memory (often equal amount)

• No-overhead downcounting looping (one pipeline flush to set up)

• Function calls should be avoided when possible (high overhead)

• Scheduling optimizations

• Minimize sum of program and data memory usage subject to constraints on

actor repetitions and data dependencies

• Non-polynomial optimization problem:

polynomial-time heuristics are used

• Synthesized uniprocessor code
for the second schedule on
the previous slide (minimum size)

code block for A
for (i = 2; i > 0; i--) {

code block for B
for (j = 2; j > 0; j--) {

code block for C
}

}

THE UNIVERSITY OF TEXAS AT AUSTIN

Software Synthesis from Synchronous Dataflow Graphs

• Generate DSP assembly language (bypass compiler)

• Benchmarks: Motorola 56000 DSP, KCCA56 C compiler,
Generated code from SDF graphs in Ptolemy environment

IIR
Demonstration

Hand coded
assembly

Generated
assembly

Generated
C code

Hand
coded C

Program memory 86 88 143 152

X data memory 20 20 24 21

Y data memory 30 33 31 42

Run time (cycles) 41,946 42,031 67,132 69,246

CD to DAT
converter

Generated
assembly

Generated C
code

Hand coded C
(Julius Smith)

Program memory 413 586 687

X data memory 456 468 398

Y data memory 283 283 324

Run time (cycles) 295,069 381,076 463,004

THE UNIVERSITY OF TEXAS AT AUSTIN

System-Level Design Environments

• Free (UC Berkeley) http://www-cad.eecs.berkeley.edu

• Ptolemy software environment for cosimulation and synthesis of dataflow

graphs (biased toward dataflow modeling) http://ptolemy.eecs.berkeley.edu

• Polis hardware/software codesign framework for embedded systems (biased

toward finite state machines) http://www-cad.eecs.berkeley.edu/~polis

• Commercial

• May cost $1 million for complete toolset (specification to manufacture)

• All synthesize board-level designs and software for digital signal processors

• Cadence (includes SPW dataflow modeling) http://www.cadence.com/

• Mentor Graphics (includes Dataflow Language) http://www.mentor.com/

• Synopsys (includes COSSAP dataflow modeling) http://www.synopsys.com/

• HP EEsof (includes HP Ptolemy) http://www.tmo.hp.com/tmo/hpeesof

THE UNIVERSITY OF TEXAS AT AUSTIN

Ptolemy Software Environment

Author: Uwe
Trautwein,
Technical
University of
Ilmenau,
Germany

Synchronous
Dataflow

Simulation

THE UNIVERSITY OF TEXAS AT AUSTIN

Ptolemy Software Environment

Implementation (heterogeneous implementation technologies)

modeling, mapping
and synthesis
(design
assistance)

Executable specification (heterogeneous models of computation)

Sl
id

e
by

 P
ro

f.
 E

dw
ar

d
A

. L
ee

, U
C

 B
er

ke
le

y.
 U

se
d

by
 p

er
m

is
si

on

THE UNIVERSITY OF TEXAS AT AUSTIN

HP EEsof Advanced Design System

• Specification, simulation, and synthesis of mixed analog,
RF, and digital designs

• End-to-end wireless system simulation
• Digital signal processing: dataflow modeling

• Analog circuits: Spice

• RF circuits: harmonic balance (frequency domain)

• RF/analog signals: circuit envelope (time domain)

• Antenna and propagation models

• Applications: IS-95, GSM, wideband CDMA, digital broadcast TV

• End-to-end wireline communication system simulation
• Mixed analog/digital designs (subset of wireless communication systems)

• Analog channel models for modems, cable modems and DSL modems

• Synthesis
• Board-level descriptions for Cadence and Mentor tools for fabrication

• Board-level designs for base stations, handsets, and wireline modems

THE UNIVERSITY OF TEXAS AT AUSTIN

Advanced Design System

• Mixed-domain simulation technologies

• Uses 3 generations of university (UC Berkeley) CAD tools Sl
id

e
by

 J
os

e
L

ui
s

P
in

o
an

d
K

al
 K

al
ba

si
, H

P
 E

E
so

f.
 U

se
d

by
 p

er
m

is
si

on

THE UNIVERSITY OF TEXAS AT AUSTIN

Conclusion

• Traditional signal processing development environment

• One style of algorithm (e.g. speech/audio or image/video)

• One implementation technology (e.g. Matlab, C, or digital signal processor)

• Decoupling system specification from its implementation

• Implementation-unbiased models of computation

• Compose models to specify complex heterogeneous systems

• Simulate and synthesize heterogeneous systems

• Example system-level electronic design automation tools

• UC Berkeley Ptolemy: dataflow, FSM, discrete event, synchronous/reactive

models plus synthesis in C, assembly, and VHDL

• HP EEsof Advanced Design System: mixed analog, RF, and digital design for

communication systems using Spice, harmonic balance, dataflow modeling

THE UNIVERSITY OF TEXAS AT AUSTIN

Resources

• Selected relevant papers
• J. Davis II, M. Goel, et al., “Overview of the Ptolemy Project,” ERL Tech.

Report UCB/ERL No. M99/37, Dept. of EECS, UC Berkeley, July 1999.
http://ptolemy.eecs.berkeley.edu/publications/papers/99/overview/

• J. L. Pino & K. Kalbasi, “Cosimulating Dataflow with Analog RF Circuits,”
Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers, Nov. 1998.
http://www.ece.utexas.edu/~bevans/professional/asilomar98/pino.pdf

• Related on-line course material
• B. L. Evans, “Embedded Software Systems,” an intro to system-level design,

graduate course, http://www.ece.utexas.edu/~bevans/courses/ee382c/

• B. L. Evans, “Real-Time Digital Signal Processing Lab,” an intro to digital
signal processors, http://www.ece.utexas.edu/~bevans/courses/realtime/

• E. A. Lee, “Specification and Modeling of Reactive Real-Time Systems,”
formal mathematics underlying models of computation, graduate course,
http://www.eecs.berkeley.edu/~eal/ee290n/index.html

• Other resources
• comp.dsp news group: FAQ http://www.bdti.com/faq/dsp_faq.hml

• Embedded processors and systems: http://www.eg3.com

THE UNIVERSITY OF TEXAS AT AUSTIN

