Modern Methods and Tools for
Signal Processing System Design

Prof. Brian L. Evans

Embedded Signal Processing L aboratory
Dept. Electrical & Computer Engineering
The University of Texasat Austin
Austin, TX 78712-1084

http://signal .ece.utexas.edu/

Outline

| ntroduction to system-level design

» Heterogeneity in algorithms, design methods, implementation technologies
Algorithm development environments
» Quick prototyping of sequential algorithms

Block diagrams

* Formal modeling of computation and communication in algorithms

Synthesis of softwar e for digital signal processors

» Optimal scheduling of multirate signal processing subsystems

System-level design environments

» Design assistance for mapping block diagramsinto implementations

Conclusion

| ntroduction to System-L evel Design

New standard for speech/audio compression, image/video
compression and mobile communications each year

Heter ogeneity in implementation technologies
* Dedicated and configurable hardware

* Dozens of high-volume programmable processor sintroduced each year

(general-purpose processor s, digital signal processors, microcontrollers)
Heter ogeneity in specification languages
* Two dominant hardwar e description languages (VHDL and Verilog)

* Revolution in high-level languages every 10 years (Fortran, C, C++, Java)

| ncreasing complexity in implementation technologies

 Moore'sLaw: Number of transistorson a chip doublesevery 18 months

* Networked, distributed, and multiprocessor systems

Embedded Signal Processing Systems

control panel ‘ real-time controller
. «¥| process
operating
I system

user interface
process

ASIC microcontroller

{ i system bus

host port host port

FPGA
programmable programmable
DSP DSP <> CODEC

memory interface memory interface

25 T 3 I T

code i DSP
\/ ‘ dual-ported memory ‘ bly
code
Heterogeneity in algorithms, design \/
methods, and implementation technologies

Slide by Prof. Edward A. Lee, UC Berkeley. Used by permission

Handling Heter ogeneity in System-L evel Design

Raisethe level of abstraction

 Morepossibilitiesto map functionality and behavior to lower levels

« Better reuse of existing designs

Softwar e subsystems

« Abstraction: assembly, high-level languages, language-independent spec.

» Lessons: object-oriented design, compilerslag behind processor architecture
Hardwar e subsystems

« Abstraction: transistor, cell library, hardwar e description languages

e Lessons. timed and untimed simulation important, synthesis maturing

System specification should be an abstraction of hardware
and softwar e specification to avoid implementation bias

Heter ogeneity in a System-L evel Design Flow

SEETEE ireling cosimulation \ symbolic

discrete
event

‘ imperative FSM dataflow ‘
AN /

AN

synthesis

Goarti tioning

y

. software
compiler synthesis

AN
N/

\ Y
execution execution
model model

\@ mulation

detail modeling and simulation

Slide by Prof. Edward A. Lee, UC Berkeley. Used by permission

Algorithm Development Environments

* Reducesdevelopment time

» Abstracts compile-and-debug loop (portability across multiple platfor ms)
 Visualization of results
« Domain-specific extensions

* Imperative languages (Matlab, Interactive Data L anguage)
« Vector computation exposes parallelism in a single computation
* Imperative nature hides parallelism in overall computation

* Imperative natur e hides dependencies between functions (communication)

o Graphical languages (L abview, Khoros, Simulink)

» Exposes parallelism and dependencies between functions exposed

 Efficiency dependson models of computation and communication used

Algorithm Development Environments

Matlab

| nteractive Data Language

Commands

interpreted (compiler available)

compiled

Visualization

signal/image/video plots

tailored for large data sets

Applications

signal and image processing,
optimization, and controls

biomedical, remote sensing,
seismic, and video imaging

Visual interface

Simulink and Stateflow

Envi

Labview

Khoros

Commands

interpreted (compiler available)

interpreted

Visualization

limited

signal/image/video plots and
large data sets

Applications

test/measurement, automation

Image and video processing

Block diagram

dataflow language (G)

dataflow and control flow

o All support 8/16/32 bit integer data, single/double precision
floating-point numbers, and data structures defined by user

* Image processing example: log;o(1 + |[FFT (image)|)

| mperative Algorithm Development Environments

file_id = fopen(‘mandrill’, ‘r");
fsize=[512, 512];
[11, count] =
fread(file_id, fsize, ‘unsigned char’);
fclose(file id);
11=11";
figure, image(l 1);
axis off, axis squar e, color map(gr ay(256))
map = 0:1/255: 1;
map = [map’, map’, map’];
imwrite(l 1, map, ‘mandrill.tiff’, ‘tiff")
12 = fft2(11);
|2 = abs(12);
12 =10g10(12 + 1);
range = max(max(l 2)) - min(min(l2));
12 = (255/range) * (12 - min(min(12)));
|2 = fftshift(12);
figure, image(l 2);
axis off, axis squar e, color map(gr ay(256))
imwrite(l2, map, ‘mandrillFFT.tiff’, ‘tiff’)

Matlab Code

filel = ‘mandrill’; lun = 1;

openr, lun, filel

pic = bytarr (512, 512)

readu, lun, pic

close, lun

picr = rotate(pic, 7)

tiff_write, ‘mandrill’, pic

window, 0, xsize=512, ysize=512, title="image’
tvscl, picr, 0,0

picrf = fft(picr, -1)

picrfd = abs(picrf)

picrfd = aloglO(picrfd + 1.0)

range = max(picrfd) - min(picrfd)

picrfd = ((255/ range) * (picrfd - min(picrfd)))
picrfd = shift(picrfd, 256, 256)

tiff_write, ‘mandrillFFT .tiff’, picrfd

window, 1, xsize=512, ysize=512, title="fft’

tv, picrfd, 0, 0

return

|DL Code

Graphical Algorithm Development Environments

L abview

Mathworks
www.mathwor ks.com

IDL
WWW.r Sinc.com

L abview
www.natinst.com

Khoros
www.khoral.com

Properties of Block Diagrams

M odular

« Largedesignsare composed of smaller designs
* Modulesencapsulate specialized expertise

Hierarchical

o Composite designsthemselves become modules
* Modules may bevery complicated
Concurrent

* Moduleslogically operate ssmultaneously
e Implementations may be sequential or parallel or distributed

Abstract

 Interaction of modules occurswithin a“model of computation”
 Many interesting and useful models of computation have emer ged

Domain Specific

» Expertise encapsulated in models of computation and libraries of modules

Formal M odeling of Computation and Communication

 Modelsof computation

» Coordinate computation of and communication between subsystems
 |deally unbiased towards implementation in hardwar e and software

 Map be mapped onto a variety of implementation technologies

Subsystem Model of Computation

speech/audio processing dataflow (1-D)

Image processing dataflow (1-D/2-D)
Image/video resampling dataflow (m-D multirate)
user interface synchronous/reactive

communication protocols | finite state machine
digital control dataflow
scal able descriptions process networks

* Hierarchical combination forms heter ogeneous systems

Specification Using Hierarchical Block Diagrams

Discrete-Event

o Attach meaningto graphs

 Example: cellular phone

Finite State
M achine

Dataflow

System Simulation and Synthesis

e Two sides of the same coin

« Simulation: scheduling then execution on desktop computer(s)

» Synthesis: scheduling then code generation in C++, C, assembly, VHDL, etc.
 Modelsof computation enable

* Global optimization of computation and communication

« Scheduling and communication that is correct by construction

Model of Global | Type of Type of Optimal | Simulation
Computation State Comm. | Scheduling | Scheduling Speed

synchronous dataflow | finite asynch static n’ fast
Boolean dataflow infinite | asynch | quasi-static | infinite medium

process networks infinite | asynch dynamic infinite medium
finite state machine finite either static not poly. fast
synchronous/reactive | finite synch static n° fast

discrete event infinite synch dynamic infinite

System Simulation and Synthesis

Design space (global state)

* Finite, e.g. finite state machine, synchronous dataflow, synchronous/r eactive
 Infinite, e.qg. imperative programming, Boolean dataflow, process networks
Wor st-case optimal scheduling time

* Finitetimeif design spaceisfinite, and infinitetimeif design spaceisinfinite
* Infinite-time off-line scheduling isimpractical: use heuristics (e.g. compilers)
* Process networ ks on-line scheduling takes infinite time but bounded memory
Use models of computation with finite state when possible

» Enablesformal analysis (consistency, deadlock, boundedness, verification)

« Suitablefor fixed topologies (VL SI and embedded softwar eimplementations)

Validation by simulation important throughout design flow

Dataflow M odels of Computation

M atched to data-intensive processing, local communication
A signal isa sequence of tokens (samples)
An actor maps input tokens onto output tokens

A set of firing rules specify when an actor can fire

A firing consumes input tokens from and produces output

tokenson FIFO gueueswith onewriter and many readers

FY Yy

enabled fired enabled fired

Synchronous Dataflow

e Firing rulesLee& Messerschmitt, 1986]

|
* An actor isenabled when enough tokens
areavailable at all of theinputs
.
* When an actor executes, it produces and
* consumes same fixed amount of tokens

* Flow of data through graph may not
enabled fired

depend on values of data

e Scheduling

I « Control flow predictable at compiletime
» Performed once, repeatedly executed
e Multirate signal processing

v e |Infinite streams of data

- * FIR filtering, FFTs, and li
enabled fired lltering s, and resampling

Scheduling Synchronous Dataflow Graphs

Il . - |2 . - |3 .)

» L oad balance production and consumption of tokens by
finding smallest integersr; in balance equations

r\O; = rgl,

rgO, = rcls

« Schedule actor firings according to data dependencies until
repetitionsr, have been met for all actors

« Balance equations have no solution if graph isinconsistent

Slide by Prof. Edward A. Lee, UC Berkeley. Used by permission

Many Possible Synchronous Dataflow Schedules

A produces 20 tokens.

20 10 20 10 B consumes 10 tokens and
° e e produces 20 tokens.

C consumes 10 tokens.

« Load balancing
* Linear-timelinear-space algorithm in size of synchronous dataflow graph

e Periodic schedule: fire A 1time, B 2times, and C 4 times

« Scheduling data dependencies on a unipr ocessor

* List scheduling: Scheduler Schedule | Buffer Size
quadratic-time algorithm List ABCBCCC 50

L ooped A (2B(20C)) 40

L ooped A (2B)(4 C) 60

L ooped A (2BC)(2C) 50

» Looped scheduler:

cubic-timealgorithm

» Second schedule has smallest code size and data size

Softwar e Synthesis of Synchronous Dataflow Graphs

» Features of conventional digital signal processors (DSPs)

* Limited, separate, on-chip data and program memory (often equal amount)
* No-overhead downcounting looping (one pipeline flush to set up)

» Function calls should be avoided when possible (high over head)

e Scheduling optimizations
* Minimize sum of program and data memory usage subject to constraintson
actor repetitions and data dependencies code block for A

« Non-polynomial optimization problem: for (1=2;1>0;1--){
polynomial-time heuristics ar e used code block for B
for (j =2,]>0;)--){

* Synthesized uniprocessor code code block for C

for the second schedule on
the previous slide (minimum size))

Softwar e Synthesis from Synchronous Dataflow Graphs

» Generate DSP assembly language (bypass compiler)

IR
Demonstration

Hand coded
assembly

Generated
assembly

Generated
C code

Hand
coded C

Program memory

86

88

143

152

24
31
67,132

21
42
69,246

20
33
42,031

20
30
41,946

X data memory

Y data memory

Run time (cycles)

Hand coded C
(Julius Smith)

687
398
324
463,004

Generated C
code

Generated
assembly

413
456
283
295,009

CD to DAT
converter

586
468
283
381,076

Program memory

X data memory

Y data memory

Run time (cycles)

 Benchmarks. Motorola 56000 DSP, KCCA56 C compiler,
Generated code from SDF graphsin Ptolemy environment

System-L evel Design Environments

o Free (UC Berkeley) http://www-cad.eecs.berkeley.edu

» Ptolemy software environment for cosimulation and synthesis of dataflow

graphs (biased toward dataflow modeling) http://ptolemy.eecs.berkeley.edu

 Polishardware/softwar e codesign framework for embedded systems (biased

toward finite state machines) http://www-cad.eecs.berkeey.edu/~polis

« Commercial
May cost $1 million for complete toolset (specification to manufacture)
All synthesize boar d-level designs and softwar e for digital signal processors
Cadence (includes SPW dataflow modeling) http://www.cadence.com/
Mentor Graphics (includes Dataflow L anguage) http://www.mentor.com/
Synopsys (includes COSSAP dataflow modeling) http://www.synopsys.com/

HP EEsof (includes HP Ptolemy) http://www.tmo.hp.com/tmo/hpeesof

Ptolemy Softwar e Environment

Author: Uwe

Trautwein,
An Adaptive Array Processor with a 4 Element

Technical
Uniform Circular Array suppresses three _ T ec ca
Cochannel Interferers

Transmit Signal S unoe : > U n | ver SI ty Of
D | '“D ;QL‘ Receive Antenna I I menau’
(A B 1 OOt Germany

) Acdaptive Aray
o Interference Signals Recsive | Frocessor
Signals

Output Signal
Print ‘vcomOriginal{o] Zoom In{z} Zoom Out {7} Zoom Fit {f}

oom Origimal{q Zoom In{z} Zoom Out {7} Zoom Fit {f}

Beam Pattern % I

Synchronous
Dataflow
Simulation

Ptolemy Softwar e Environment

Executable specification (heter ogeneous models of computation)

modeling, mapping
and synthesis

(design of
assistance) —

Ll T

I ALl |

P

il
nrngr%g il OO,
miamory intartace
cantrol panel 1 \ \

mactGl
S0

COade

Slide by Prof. Edward A. Lee, UC Berkeley. Used by permission

| mplementation (heter ogeneous implementation technologies)

HP EEsof Advanced Design System

o Specification, smulation, and synthesis of mixed analog,
RF, and digital designs

* End-to-end wireless system simulation

Digital signal processing: dataflow modeling

Analog circuits: Spice

RF circuits: harmonic balance (frequency domain)

RF/analog signals:. circuit envelope (time domain)

Antenna and propagation models

Applications: 1S-95, GSM, wideband CDMA, digital broadcast TV

* End-to-end wireline communication system simulation

 Mixed analog/digital designs (subset of wireless communication systems)
* Analog channel modelsfor modems, cable modems and DSL modems

o Synthesis
» Board-level descriptionsfor Cadence and Mentor toolsfor fabrication
» Board-level designsfor base stations, handsets, and wir eline modems

Advanced Design System

* Mixed-domain ssmulation technologies

Domain

A

S-

Frequency parameters

Devic

Harmonic
Balance

odels

SPICE

Convolution

Numeric

» Uses 3 generations of university (UC Berkeley) CAD tools

Envelope

Berkeley
Ptolemy

HFP Ptolemy

™ Synchronous
Dataflow

HP Ptolemy
{Timed
Synchronous
Datatlow)

Advancing Capabilities

Slide by Jose Luis Pino and Kal Kalbasi, HP EEsof. Used by permission

Conclusion

e Traditional signal processing development environment

* Onestyleof algorithm (e.g. speech/audio or image/video)

 Oneimplementation technology (e.g. Matlab, C, or digital signal processor)

* Decoupling system specification from itsimplementation

* Implementation-unbiased models of computation
» Compose modelsto specify complex heter ogeneous systems

o Simulate and synthesize heter ogeneous systems

« Example system-level electronic design automation tools

o UC Berkeley Ptolemy: dataflow, FSM, discrete event, synchronous/reactive
models plus synthesisin C, assembly, and VHDL

 HP EEsof Advanced Design System: mixed analog, RF, and digital design for

communication systems using Spice, har monic balance, dataflow modeling

Resour ces

o Selected relevant papers

e J. Davisll, M. God, et al., “Overview of the Ptolemy Project,” ERL Tech.
Report UCB/ERL No. M99/37, Dept. of EECS, UC Berkeley, July 1999.
http://ptolemy.eecs.berkeley.edu/publications/paper /99/over view/

 J.L.Pino & K. Kalbag, “Cosimulating Dataflow with Analog RF Circuits,”
Proc. |[EEE Asilomar Conf. on Signals, Systems, and Computers, Nov. 1998.
http://www.ece.utexas.edu/~bevans/professional/asilomar 98/pino.pdf

* Related on-line course material
e B. L. Evans, “Embedded Software Systems,” an intro to system-level design,

graduate cour se, http://www.ece.utexas.edu/~bevans/cour ses/ee382c/

 B.L. Evans, “Real-Time Digital Signal Processing Lab,” an introto digital
signal processor s, http://www.ece.utexas.edu/~bevans/cour ses/r ealtime/

 E. A. Lee, “Specification and M odeling of Reactive Real-Time Systems,”
formal mathematics underlying models of computation, graduate cour se,
http://www.eecs.ber keley.edu/~eal/ee290n/index.html

e Other resources
e comp.dsp newsgroup: FAQ http://www.bdti.com/fag/dsp faq.hml
 Embedded processors and systems:. http://www.eg3.com

