Computational Process Networks

for Real-Time High-Throughput Signal and Image
Processing Systems on Workstations

Gregory E. Allen

EE 382C - Embedded Software Systems

4 March 2002

http://www.ece.utexas.edu/~allen/




Outline

e Introduction and Motivation

e Modeling Background

e Computational Process Networks
e Application: Sonar Beamforming

e 4-GFLOP 3-D Sonar Beamformer

e SuMmmary



INntroduction

e High-performance, low-volume applications
(=100 MB/s 1/0O; 1-20 GFLOPS; under 50 units)

e Sonar beamforming
e Synthetic aperture radar (SAR) image processing
e Seismic volume processing

e Current real-time implementation technologies

e Custom hardware

e Custom integration using commercial-off-the-shelf (COTS)
processors (e.g. 100 digital signal processors in a VME chassis)

e COTS software development is problematic

e Development and debugging tools are generally immature

« Partitioning is highly dependent on hardware topology




Workstation Implementations

e Multiprocessor workstations are commodity items

e Up to 64 processors for Sun Enterprise servers

e Up to 14 processors for Compaqg AlphaServer ES

e Symmetric multiprocessing (sMmp) operating systems

< Dynamically load balances many tasks on multiple processors
e Lightweight threads (e.g. POSIX Pthreads)
= Fixed-priority real-time scheduling (e.g. Solaris)

e Leverage native signhal processing (NSP) kernels

e Software development is faster and easier

= Development environment and target architecture are same

e Concurrent development on less powerful workstations




Native Sighal Processing

e Single-cycle multiply-accumulate (MAC) operation

= Vector dot products, digital filters, and correlation

N
Zlai Xi
e Missing extended precision accumulation 1=

e Single-instruction multiple-data (SIMD) processing

e UltraSPARC Visual Instruction Set (VIS) and Pentium MMX:
64-bit registers, 8-bit and 16-bit fixed-point arithmetic

e P3 SSE, Athlon 3DNow!: 64-bit registers, 32-bit floating-point

e PowerPC AltiVec: 128-bit registers, 4x32 bit floating-point MACs

e Software data prefetching to prevent pipeline stalls

e Must hand-code using intrinsics and assembly code




Thread Pools

e A supervisor / worker model for threads

e A fixed number of worker threads are created at
initialization time

e Supervisor inserts work reguests Into a gueue

« \Workers remove and process the requests
> ONRVIRY
ONRVERY

Pool of worker threads

Supervisor
thread

)

Queue of L

work requests




Parallel Programming

e Problem: Parallel programming is difficult
e Hard to predict deadlock

e Non-determinate execution

= Difficult to make scalable software (e.g. rendezvous models)

e Solution: Formal models for programming

« \We develop a model that leverages SMP hardware
= Utilizes the formal bounded Process Network model
e Extends with firing thresholds from Computation Graphs

e Models algorithms on overlapping continuous streams of data

e We provide a high-performance implementation




Motivation

Custom
Hardware

Embedded
COTS

Commodity
Workstation

Development cost

$2000K

$500K

$100K

Development time

24 months

12 months

6 months

Physical size (m3)

0.067

0.067

0.090

Reconfigurability

low

medium

high

Software portability

low

medium

high

Hardware upgradability

low

medium

high

4-GFLOP sonar beamformers; volumes of under 50 units; 1999 technology




Outline

e Introduction and Motivation

e Modeling Background

e Computational Process Networks
e Application: Sonar Beamforming

e 4-GFLOP 3-D Sonar Beamformer

e SuMmmary



Dataflow Models

P
e Models functional parallelism

e A program is represented as a directed graph

e Each node represents a computational unit

e Each edge represents a one-way FIFO queue of data

e A node may have any number of input or output
edges and may communicate only via these edges

Synchronous Dataflow (SDF

Boolean Dataflow (BDF)
BDF ) DDF | PN Dynamic Dataflow (DDF)
Process Networks (PN)

\J
more general




Synchronous Dataflow (SDF)

e Flow of control and memory usage are known at
compile time [Lee, 1986]

e Schedule constructed once and repeatedly executed

« Well-suited to synchronous multirate signal
processing on fixed topologies

e Used In design automation tools (HP EEsof Advanced
Design System, Cadence Signal Processing Work System)

Schedule Memory

AAABBBBCC| 12+8
P ° ABABCABBC| 6+4




Computation Graphs (CG)

e Each FIFO gueue Is parametrized [Karp & Miller, 1966]

A 1s number of data words initially present
U is number of words inserted by producer on each firing
W is number of words removed by consumer on each firing
T is number of words in queue before consumer can fire
where T 2W

e Termination and boundedness are decidable
e Computation graphs are statically scheduled

= |terative static scheduling algorithms

e Synchronous Dataflow is T = W for every queue




Boolean Dataflow (BDF)

e Turing complete

e Adds switch and select - provides if/then/else, for
loops

e Termination and boundedness are undecidable

= Quasi-static scheduling with clustering of SDF




Process Networks (PN)

e A networked set of Turing machines
e Concurrent model for functional parallelism

 Mathematically provable properties [Kahn, 1974]

e Guarantees correctness

e Guarantees determinate execution of programs

e Dynamic firing rules at each node

e Suspend execution when trying to consume data from an
empty queue (blocking reads)

e Never suspended for producing data (non-blocking writes)
SO gueues can grow without bound




Bounded Scheduling

e Infinitely large queues cannot be realized

e Dynamic scheduling to always execute the program
INn bounded memory if 1t is possible [Parks, 1995]:

1. Block when attempting to read from an empty queue
2. Block when attempting to write to a full queue

3.0n artificial deadlock, increase the capacity of the
smallest full queue until its producer can fire

e Preserves formal properties: liveness, correctness,
and determinate execution

e Maps well to a threaded implementation
(one node maps to one thread)




Outline

e Introduction and Motivation

e Modeling Background

e Computational Process Networks
e Application: Sonar Beamforming

e 4-GFLOP 3-D Sonar Beamformer

e SuMmmary



Computational Process Networks

e Utilize the Process Network model [Kahn, 1974]

e Captures concurrency and parallelism

e Provides correctness and determinate execution

e Utilize bounded scheduling [Parks, 1995]

e Permits realization in finite memory

= Preserves properties regardless of which scheduler is used

e Extend this model with firing thresholds

e Models algorithms on overlapping continuous streams of data,
e.g. digital filters and fast Fourier transforms (FFTs)

e Decouples computation (node) from communication (queue)

= Allows compositional parallel programming




Implementation

e Designed for real-time high-throughput signal
processing systems based on proposed framework

e Implemented in C++ with template data types

e POSIX Pthread class library

e Portable to many different operating systems

= Optional fixed-priority real-time scheduling

e Low-overhead, high-performance, and scalable

e Publicly available source code

http://www.ece.utexas.edu/~allen/CPNSourceCode/




Implementation: Nodes

e Each node corresponds to a Pthread

e Node granularity larger than thread context switch

e Context switch is about 10 pgs in Sun Solaris operating system
= Increasing node granularity reduces overhead

e Thread scheduler dynamically schedules nodes as
the flow of data permits

e Efficient utilization of multiple processors (SMP)




Implementation: Queues

= Queues have Input and output firing thresholds

e Nodes operate directly on queue memory to avoid
unnecessary copying

e Queues use mirroring to keep data contiguous

Mirrored data

/\ /
A4 A4

Queue data region Mirror region

e Compensates for lack of hardware support for circular buffers
(e.g. modulo addressing in DSPs)

e Queues tradeoff memory usage for overhead

= Virtual memory manager keeps data circularity in hardware




A Sample Node

= A gueue transaction uses pointers

e Decouples communication and computation

= Overlapping streams without copying
inputQ outputQ
typedeffioat T;

while (rue) {
// blocking calls to get infout data pointers
const T*inPtr =inputQ.GetDequeuePtr(inThresh);
T outPtr = outputQ.GetEnqueuePt(outThresh);

DoComputation( inPtr, inThresh, outPtr, outThresh);

// complete node transactions
inputQ.Dequeue(nSize);
outputQ.Enqueue(outSize);

}




A Sample Program

e Compose system from a library of nodes

< Rapid development of real-time parallel software

e Programs currently constructed in C++
intmain(){
PNThreshodQueue<T> P (queuelLen, maxThresh);
PNThresholdQueue<T> Q (queuelen, maxThresh);
MyProducerNode A P)
My TransmuterNode B(P,Q),
\ IMyConsumerNode C Q)

maxThresh maxThresh

/\ /
~V ~

Queue data region (queuelLen) Mirror region




Application: Sonar Beamforming

Beam Hazard
_ _ coverage
Side view
(vertical coverage)

OO
< %%j

Top view !
(horizontal coverag

Collaboration with UT Applied Research Laboratories




Sonar Hydrophone Array

e Array of directional hydrophone sensors

e Each sensor has a wide directional response

Sensor Positions and Pointing angles Typical Sensor Directional Response
0

80

"0 “\“‘“““‘“ (A "'”’”on, ”’00
oS NYY
© ((rp@
v
%
%
&
<
<
&

[

=
o
T

y posistion

0 5 10
X posistion




Sonar Beamforming

e A beamformer is a directional (spatial) filter

e Beams with a narrow response pattern are formed

Desired Beam Pointing Angles Typical Beam Directional Response

y posistion

X posistion




Time-Domain Beamforming

e Delay-and-sum weighted sensor outputs

e Geometrically project the sensor elements onto a
line to compute the time delays

Projection for a beam pointing 20° off axis
T T T O@O’J(DO T /. T T

1
1
1

M
b(t) = izzl a; X;(t=T;)

[E=Y
a1

[N
o

b(t) beam output

(61

xj(t) ith sensor output

y position, inches

1j  ithsensor delay

o

aj ith sensor weight —sensor element

x projected element

-15 -10 -5 0 5 10 15
X position, inches




REENG
DEFTH
L RN

30 Wiews
Frol Hasngre
HIH Hsagri

DEFTH fo

RN
DEFTH
[N

DEFTH

onar Display

HE Fil¥
SPEED
DEFTH

PITCH
[ -
FPIHG




4-GFLOP 3-D Beamformer

« 80 horizontal x 10 vertical sensors

e Data at 160 MB/s input, 72 MB/s output

e Collapse vertical sensors into 3 sets of 80 staves

e Do horizontal beamforming, 3 x 1200 MFLOPS

Beam data

Element data Stave data Digital 24 MB/s each
S 40 MB/s each 32 MB/s each | Interpolation Fan 0
data Beamformer Beams

sensor
data Three-fan Digital
Vertical Interpolation

sensor Beamformer Beamformer
data

500 MFLOPS Digital
Interpolation

data Beamformer

sensor

1200 MFLOPS each



ertical Beamformer

OOOOO

[}
O
[e]e]
o
oo
[e]e]
o
o
(¢}

¢]
O000000000
0000000000
0000000000
0000000000
O000000000
O000000000
O000000000
0000000000
O000000000
O000000000
0000000000
0000000000
0000000000
0000000000
O000000000
[eXe]
[e]¢]

Multiple vertical transducers
for every horizontal position

e Vertical columns combined into 3 stave outputs

e Multiple integer dot products (16x16-bit multiply, 32-bit add)
e Convert integer to floating-point for following stages

e Interleave output data for following stages

e Kernel implementation on UltraSPARC-I11

= VIS for fast dot products and floating-point conversion
= Software data prefetching to hide memory latency

e Operates at 313 MOPS at 336 MHz (93% of peak)




Horizontal Beamformer

e Sample to preserve frequency content, interpolate
to obtain desired time delay resolution

Interpolate up to Time delay
intervald=A/L 91 atintervald

—»{ Interpolate Single

z-N1
' éb ' \ beam output
Stave data at . M .

interval A * ; ° o[n]

—»{ Interpolate Z-Nm

Digital Interpolation Beamformer

e Different beams formed from same data

e Kernel implementation on UltraSPARC-I11
e Highly optimized C++ (loop unrolling and SPARCompiler5.0DR)

e Operates at 440 MFLOPS at 336 MHz (60% of peak)




Integration with Framework

= A single processor (thread) cannot achieve real-
time performance for any one node

e Each beamformer node utilizes a pool of 4 threads
(data parallelism)

e Performance dictates number of worker threads

Beam data

Element data Stave data Digital 24 MB/s each
Sl 40 MB/s each 32 MB/s each | Interpolation Fan 0
data Beamformer Beams

sensor
data Three-fan Digital
Vertical Interpolation

sensor Beamformer Beamformer
data

500 MFLOPS Digital
Interpolation

Beamformer

sensor
data

1200 MFLOPS each



Performance Results

e Sun Ultra Enterprise 4000 with twelve 336-MHz
UltraSPARC-IIs, 3 Gb RAM, running Solaris 2.6

e Compare to seqguential case and thread pools

Performance vs. Number of processors * On one CPU,
| | | ' | slowdown < 0.5%

Real-time: 4.1 GFLOPS

« 8 CPUs vs. thread pool

e 7% faster

e 20% less memory

«On 12 CPUs

e Speedup is 11.28 and
efficiency of 94%

e Runs real-time +14%




PowerPC G4 Implementation

e Improved kernel performance with AltiVec
= Vertical beamformer: 1.56 times faster in ops/cycle (700 MIOPS)

e Horizontal beamformer: 1.83 times faster in ops/cycle (1 GFLOP)

e Peak potential increase: 8x vertical, and 4x horizontal

e Cluster of Quad PowerPC G4 VME boards

e Symmetric multiprocessing with Linux for PowerPC

= Connected with 64-bit/ 33 MHz P@-PCI bus
e Synergy Microsystems, Inc. VSS4 board
e Leverage high-volume CPUs and OS
= AltiVec enabled DSP libraries

e Beowolf cluster in a VME chassis




Summary

e Bounded Process Network model extended with
firing thresholds from Computation Graphs

e Provides correctness and determinate execution
e Naturally models parallelism in system
< Models algorithms on overlapping continuous streams of data

e Multiprocessor workstation implementataion
Designed for high-throughput data streams

Native signal processing on general-purpose processors
SMP operating systems, real-time lightweight POSIX Pthreads

Low-overhead, high-performance and scalable

e Reduces implementation time and cost




