
Computational Process Networks
 for Real-Time High-Throughput Signal and Image

Processing Systems on Workstations

Gregory E. Allen

EE 382C - Embedded Software Systems

4 March 2002

http://www.ece.utexas.edu/~allen/



2

Outline

• Introduction and Motivation

• Modeling Background

• Computational Process Networks

• Application: Sonar Beamforming

• 4-GFLOP 3-D Sonar Beamformer

• Summary



Introduction
• High-performance, low-volume applications

(~100 MB/s I/O; 1-20 GFLOPS; under 50 units)

3

• Sonar beamforming

• Synthetic aperture radar (SAR) image processing

• Seismic volume processing

• Current real-time implementation technologies
• Custom hardware

• Custom integration using commercial-off-the-shelf (COTS) 
processors (e.g. 100 digital signal processors in a VME chassis)

• COTS software development is problematic
• Development and debugging tools are generally immature

• Partitioning is highly dependent on hardware topology



Workstation Implementations
• Multiprocessor workstations are commodity items

• Up to 64 processors for Sun Enterprise servers

• Up to 14 processors for Compaq AlphaServer ES

• Symmetric multiprocessing (SMP) operating systems
• Dynamically load balances many tasks on multiple processors

• Lightweight threads (e.g. POSIX Pthreads)

• Fixed-priority real-time scheduling (e.g. Solaris)

• Leverage native signal processing (NSP) kernels

• Software development is faster and easier

4

• Development environment and target architecture are same

• Concurrent development on less powerful workstations



Native Signal Processing
• Single-cycle multiply-accumulate (MAC) operation

• Vector dot products, digital filters, and correlation

• Missing extended precision accumulation

• Single-instruction multiple-data (SIMD) processing

• UltraSPARC Visual Instruction Set (VIS) and Pentium MMX:   
64-bit registers, 8-bit and 16-bit fixed-point arithmetic

• P3 SSE, Athlon 3DNow!: 64-bit registers, 32-bit floating-point

• PowerPC AltiVec: 128-bit registers, 4x32 bit floating-point MACs

• Software data prefetching to prevent pipeline stalls

• Must hand-code using intrinsics and assembly code
5

i i
i

N
xα

=
∑

1



Thread Pools
• A supervisor / worker model for threads

• A fixed number of worker threads are created at 
initialization time

• Supervisor inserts work requests into a queue

• Workers remove and process the requests

Supervisor
thread

Pool of worker threads

Queue of
work requests

6



Parallel Programming
• Problem: Parallel programming is difficult

• Hard to predict deadlock

• Non-determinate execution

• Difficult to make scalable software (e.g. rendezvous models)

• Solution: Formal models for programming

• We develop a model that leverages SMP hardware

7

• Utilizes the formal bounded Process Network model

• Extends with firing thresholds from Computation Graphs

• Models algorithms on overlapping continuous streams of data

• We provide a high-performance implementation



Motivation

4-GFLOP sonar beamformers; volumes of under 50 units; 1999 technology

8

Custom
Hardware

Embedded
COTS

Commodity
Workstation

Development cost

Development time

Physical size (m3)

Reconfigurability

Software portability

Hardware upgradability

$2000K $500K $100K

24 months 12 months 6 months

0.067 0.067 0.090

low medium high

low medium high

low medium high



Outline

• Introduction and Motivation

• Modeling Background

• Computational Process Networks

• Application: Sonar Beamforming

• 4-GFLOP 3-D Sonar Beamformer

• Summary

9



Dataflow Models

• Each node represents a computational unit

• Each edge represents a one-way FIFO queue of data

• Models functional parallelism

• A program is represented as a directed graph

P
BA

• A node may have any number of input or output 
edges and may communicate only via these edges

SDF

Synchronous Dataflow (SDF)
Boolean Dataflow (BDF)
Dynamic Dataflow (DDF)
Process Networks (PN)

more general
10

BDF DDF PN



• Flow of control and memory usage are known at 
compile time [Lee, 1986]

• Schedule constructed once and repeatedly executed

• Well-suited to synchronous multirate signal 
processing on fixed topologies

• Used in design automation tools (HP EEsof Advanced 
Design System, Cadence Signal Processing Work System)

Synchronous Dataflow (SDF)

11

A
P

B
Q

C4 3 2 4

Schedule Memory
AAABBBBCC
ABABCABBC

12 + 8
6 + 4



Computation Graphs (CG)
• Each FIFO queue is parametrized [Karp & Miller, 1966]

A is number of data words initially present

U is number of words inserted by producer on each firing

W is number of words removed by consumer on each firing

T is number of words in queue before consumer can fire

where T ≥≥≥≥ W

12

• Termination and boundedness are decidable

• Computation graphs are statically scheduled

• Iterative static scheduling algorithms

• Synchronous Dataflow is T = W for every queue



Boolean Dataflow (BDF)
• Turing complete

• Adds switch and select – provides if/then/else, for 
loops

• Termination and boundedness are undecidable

• Quasi-static scheduling with clustering of SDF

B

D

1-P1
1 1

CP1 1 1

A

1-P2

P2

F

T

F

T

1

1 1

1

13



• A networked set of Turing machines

• Concurrent model for functional parallelism

• Mathematically provable properties [Kahn, 1974]

Process Networks (PN)

14

• Suspend execution when trying to consume data from an 
empty queue (blocking reads)

• Never suspended for producing data (non-blocking writes) 
so queues can grow without bound

• Dynamic firing rules at each node

• Guarantees correctness

• Guarantees determinate execution of programs



Bounded Scheduling
• Infinitely large queues cannot be realized

• Dynamic scheduling to always execute the program 
in bounded memory if it is possible [Parks, 1995]:

1. Block when attempting to read from an empty queue

2. Block when attempting to write to a full queue

3. On artificial deadlock, increase the capacity of the 
smallest full queue until its producer can fire

• Preserves formal properties: liveness, correctness, 
and determinate execution

• Maps well to a threaded implementation
(one node maps to one thread)

15



Outline

• Introduction and Motivation

• Modeling Background

• Computational Process Networks

• Application: Sonar Beamforming

• 4-GFLOP 3-D Sonar Beamformer

• Summary

16



Computational Process Networks

• Utilize the Process Network model [Kahn, 1974]

• Utilize bounded scheduling [Parks, 1995]

• Models algorithms on overlapping continuous streams of data,
e.g. digital filters and fast Fourier transforms (FFTs)

• Decouples computation (node) from communication (queue)

• Allows compositional parallel programming
17

• Captures concurrency and parallelism

• Provides correctness and determinate execution

• Permits realization in finite memory

• Preserves properties regardless of which scheduler is used

• Extend this model with firing thresholds



• Low-overhead, high-performance, and scalable

• Publicly available source code

Implementation

• Designed for real-time high-throughput signal 
processing systems based on proposed framework

• Implemented in C++ with template data types

• POSIX Pthread class library
• Portable to many different operating systems

• Optional fixed-priority real-time scheduling

http://www.ece.utexas.edu/~allen/CPNSourceCode/

18



• Node granularity larger than thread context switch

Implementation: Nodes

Pthread Pthread

• Each node corresponds to a Pthread

19

• Context switch is about 10 µµµµs in Sun Solaris operating system

• Increasing node granularity reduces overhead

• Thread scheduler dynamically schedules nodes as 
the flow of data permits

• Efficient utilization of multiple processors (SMP)



Implementation: Queues

Mirror regionQueue data region

Mirrored data

• Queues have input and output firing thresholds

• Nodes operate directly on queue memory to avoid 
unnecessary copying

• Queues use mirroring to keep data contiguous

20

 •Compensates for lack of hardware support for circular buffers 
(e.g. modulo addressing in DSPs)

• Queues tradeoff memory usage for overhead

• Virtual memory manager keeps data circularity in hardware



A Sample Node
• A queue transaction uses pointers

inputQ
Node

outputQ

typedef float T;
while (true) {

// blocking calls to get in/out data pointers
   const T* inPtr  = inputQ.GetDequeuePtr(inThresh);
   T*       outPtr = outputQ.GetEnqueuePtr(outThresh);

   DoComputation( inPtr, inThresh, outPtr, outThresh );

// complete node transactions
   inputQ.Dequeue(inSize);
   outputQ.Enqueue(outSize);
}

21

• Decouples communication and computation

• Overlapping streams without copying



int main() {
PNThresholdQueue<T> P (queueLen, maxThresh);
PNThresholdQueue<T> Q (queueLen, maxThresh);
MyProducerNode A (P);
MyTransmuterNode B (P, Q);
MyConsumerNode C (Q);

}

A Sample Program

A
P

B
Q

C

• Programs currently constructed in C++

22

• Compose system from a library of nodes

• Rapid development of real-time parallel software

Mirror regionQueue data region (queueLen)

maxThresh maxThresh



Application: Sonar Beamforming

23
Collaboration with UT Applied Research Laboratories

HazardBeam
coverage

Side view
(vertical coverage)

Top view
(horizontal coverage)



  20

  40

  60

  80
30

-150

60

-120

90-90

120

-60

150

-30

180

0

Sonar Hydrophone Array
• Array of directional hydrophone sensors

• Each sensor has a wide directional response

Sensor Positions and Pointing angles

-25 -20 -15 -10 -5 0 5 10 15 20 25

-5

0

5

10

15

20

25

30

x posistion

y 
po

si
st

io
n

24

Typical Sensor Directional Response



  20

  40

  60

  80
30

-150

60

-120

90-90

120

-60

150

-30

180

0

Sonar Beamforming

25
-25 -20 -15 -10 -5 0 5 10 15 20 25

-5

0

5

10

15

20

25

30

x posistion

y 
po

si
st

io
n

• A beamformer is a directional (spatial) filter

• Beams with a narrow response pattern are formed

Desired Beam Pointing Angles Typical Beam Directional Response



Time-Domain Beamforming

  
b(t) = α i xi(t–τi)Σ

i = 1

M

b(t) beam outputi
xi(t) ith sensor output

τi ith sensor delay

αi ith sensor weight

• Delay-and-sum weighted sensor outputs

• Geometrically project the sensor elements onto a 
line to compute the time delays

-20 -15 -10 -5 0 5 10 15 20

-5

0

5

10

15

20

Projection for a beam pointing 20° off axis

x position, inches

y 
po

si
tio

n,
 in

ch
es

20°

sensor element
projected element

26



Sample Sonar Display

27



4-GFLOP 3-D Beamformer
• 80 horizontal x 10 vertical sensors

• Data at 160 MB/s input, 72 MB/s output

• Collapse vertical sensors into 3 sets of 80 staves

• Do horizontal beamforming, 3 x 1200 MFLOPS

28

sensor
data

sensor
data

sensor
data

sensor
data

Element data
40 MB/s each

Three-fan
Vertical

Beamformer

Stave data
32 MB/s each

Digital
Interpolation
Beamformer

Digital
Interpolation
Beamformer

Digital
Interpolation
Beamformer

500 MFLOPS

1200 MFLOPS each

Fan 0
Beams

Fan 1
Beams

Fan 2
Beams

Beam data
24 MB/s each



Multiple vertical  transducers 
for every horizontal position

stave

Vertical Beamformer

• Vertical columns combined into 3 stave outputs
• Multiple integer dot products (16x16-bit multiply, 32-bit add)

• Convert integer to floating-point for following stages

• Interleave output data for following stages

• Kernel implementation on UltraSPARC-II
• VIS for fast dot products and floating-point conversion

• Software data prefetching to hide memory latency

• Operates at 313 MOPS at 336 MHz (93% of peak)
29



• Different beams formed from same data

• Kernel implementation on UltraSPARC-II

Horizontal Beamformer

Interpolate z-N1

Interpolate z-NM

Σ b[n]
•
•

•
•

Digital Interpolation Beamformer

Stave data at
interval ∆

Interpolate up to
interval δ = ∆/L

Time delay
at interval δα1

αM

• Sample to preserve frequency content, interpolate 
to obtain desired time delay resolution

• Highly optimized C++ (loop unrolling and SPARCompiler5.0DR)

• Operates at 440 MFLOPS at 336 MHz (60% of peak)
30

Single
beam output



sensor
data

sensor
data

sensor
data

sensor
data

Element data
40 MB/s each

Three-fan
Vertical

Beamformer

Stave data
32 MB/s each

Digital
Interpolation
Beamformer

Digital
Interpolation
Beamformer

Digital
Interpolation
Beamformer

500 MFLOPS

1200 MFLOPS each

Fan 0
Beams

Fan 1
Beams

Fan 2
Beams

Beam data
24 MB/s each

Integration with Framework
• A single processor (thread) cannot achieve real-

time performance for any one node

• Each beamformer node utilizes a pool of 4 threads
(data parallelism)

• Performance dictates number of worker threads

31



Performance Results
• Sun Ultra Enterprise 4000 with twelve 336-MHz 

UltraSPARC-IIs, 3 Gb RAM, running Solaris 2.6

• Compare to sequential case and thread pools

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

CPUs

M
F

L
O

P
S

Performance vs. Number of processors

• Speedup is 11.28 and 
efficiency of 94%

• Runs real-time +14%
32

• On one CPU, 
slowdown < 0.5%

• 8 CPUs vs. thread pool

• On 12 CPUs

• 7% faster

• 20% less memory

Real-time: 4.1 GFLOPS



PowerPC G4 Implementation

33

• Improved kernel performance with AltiVec
• Vertical beamformer: 1.56 times faster in ops/cycle (700 MIOPS)

• Horizontal beamformer: 1.83 times faster in ops/cycle (1 GFLOP)

• Peak potential increase: 8x vertical, and 4x horizontal

• Cluster of Quad PowerPC G4 VME boards
• Symmetric multiprocessing with Linux for PowerPC

• Connected with 64-bit / 33 MHz PØ-PCI bus

• Synergy Microsystems, Inc. VSS4 board

• Leverage high-volume CPUs and OS

• AltiVec enabled DSP libraries

• Beowolf cluster in a VME chassis



33

Summary
• Bounded Process Network model extended with

firing thresholds from Computation Graphs
• Provides correctness and determinate execution

• Naturally models parallelism in system

• Models algorithms on overlapping continuous streams of data

• Multiprocessor workstation implementataion
• Designed for high-throughput data streams

• Native signal processing on general-purpose processors

• SMP operating systems, real-time lightweight POSIX Pthreads

• Low-overhead, high-performance and scalable

• Reduces implementation time and cost


