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Reactive Embedded Systems

• Run at the speed of their environment

• When as important as what

• Concurrency for controlling the real world

• Determinism desired

• Limited resources (e.g., memory)

• Discrete-valued, time-varying

• Examples:

– Systems with user interfaces

∗ Digital Watches
∗ CD Players

– Real-time controllers

∗ Anti-lock braking systems
∗ Industrial process controllers
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The Digital Approach

Why do we build digital systems?

• Voltage noise is unavoidable

• Discretization plus non-linearity can filter out
low-level noise completely

• Complex systems becomes predictable and
controllable

• Incredibly successful engineering practice
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The Synchronous Approach

Idea: Use the same trick to filter out “time noise.”

• Noise: Uncontrollable and unpredictable
delays

• Discretization ⇔ global synchronization

• The synchrony hypothesis:

Things compute instantaneously

• Already widespread:

– Synchronous digital systems

– Finite-state machines
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The Synchronous Model of Time

• Synchronous: time is an ordered sequence of
instants

• Reactive: Instants initiated by environmental
events

Time

System responds to each instant

Nothing happens between instants

• A system only needs to be “fast enough” to
simulate synchronous behavior

Time
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Who Uses This Stuff?

• Virtually all digital logic designed this way

• In software,

– Dassult (French aircraft manufacturer)
builds avionics with synchronous software

– Polis (Berkeley HW/SW codesign project)
uses Esterel for specifying EFSMs

– Cadence built product (Cierto VCC) based
on Polis

– TI exploring using synchronous software
for specifying/simulating DSPs
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Heterogeneity

Why are there so many system description
languages?

• Want a succinct description for my system.

• “Let the language fit the problem”

Bigger systems have more diverse problems; use
a fitting language for each subproblem.

Want a heterogeneous coordination scheme that
allows many languages to communicate.
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Heterogeneity in Ptolemy

Ptolemy: A system for rapid prototyping of
heterogeneous systems

A Ptolemy domain (model of computation):

• Set of blocks:

Atomic pieces of computation that can be
“fired” (evaluated).

A C

B

D

• Scheduler:

Determines block firing order before or during
system execution.

A B C D
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Schedulers Support
Heterogeneity

• Scheduler does not know block contents, only
how to fire

• Block contents may be anything

• “Wormhole”: A block in one domain that
behaves as a system in another

• Hierarchical heterogeneity: Any system may
contain subsystems described in different
domains
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The SR Domain

• Reactive systems need concurrency

• The synchronous model makes for
deterministic concurrency

– No “interleaving” semantics

– Events are totally-ordered

– “Before,” “after,” “at the same time” all
well-defined and controllable

• Embedded systems need boundedness;
dynamic process creation a problem

• SR system: fixed set of synchronized,
communicating processes
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The SR Domain (2)

Zero-delay blocks

Instantaneous communication
with feedback

Single driver, multiple receiver channels

• Block functions may change between instants
for time-varying behavior

• Blocks may be specified in any language

14



STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Zero Delay and Feedback

How to maintain determinism?

A B

Which goes first?
Need an
order-invariant
semantics

Contradictory!
Need to attach
meaning to such
systems.
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Dealing with Feedback

Why bother at all?
Answer: Heterogeneity

• Cycles are usually broken by delay elements
at the lowest level

• Some schemes insist on this

• False feedback often appears at higher levels

• Data dependent cycles can appear when
sharing resources

• Virtually all cycles are “false,” yet must be
dealt with.
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Fixed-point Semantics are Natural
for Synchronous Specifications
with Feedback

Why a fixed point?

Self-reference:
The essence of a cycle

f (xt) = xt

System function Vector of signals

(composition of at time t

block functions) (zero delay)

fixed point ⇐⇒ stable state

determinism ⇐⇒ unique solution
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Unique Least Fixed Point
Theorem

A monotonic function on a complete
partial order (with ⊥) has a unique
least fixed point.

What does it mean to make the system function f

monotonic and the signal values a CPO?
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The Least Fixed Point of What?

A

B

C

D
fI O

Interpret as ↘ ↗ Take LFP

B(I , f (I)) = f (I)

A

B

C

D

B

I

O O
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Vector of Signals is a CPO

Values along an upward path grow more defined.

⊥

1 0

“Undefined”
element

More Defined

Less Defined

Incomparable

11 01 10 00

⊥1 1⊥ 0⊥ ⊥0

⊥⊥

vector-valued extension

Formally, xv y if y is at least as defined as x.
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Adding ⊥ Is Enough

Any set {a1,a2, . . . ,an, . . .} can easily be “lifted” to
give a flat partial order:

a1 a2 a3 · · · an · · ·

⊥
A CPO for signals with pure events:

⊥

absent present

A CPO for valued events:

absent v1 v2 · · · vn · · ·

⊥
Why not absent v present?

present A then ... else ... end

Violates monotonicity
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Monotonic Block Functions

Giving a more defined input to a monotonic
function always gives a more defined output.

⊥

f (⊥)

f ( f (⊥))

f ( f ( f (⊥)))

f ( f ( f ( f (⊥))))

Formally, xv y implies f (x) v f (y).

A monotonic function never recants (“changes its
mind”).
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Many Languages Use Strict
Functions, Which Are Monotonic

A strict function:

g(. . . ,⊥, . . .
︸ ︷︷ ︸

inputs

) = (⊥, . . . ,⊥
︸ ︷︷ ︸

outputs

)

Outside:
A strict
monotonic
function

Inside:
Simple
“function call”
semantics

Most common imperative languages only
compute strict functions.

Danger: Cycles of strict functions
deadlock—fixed point is all ⊥—need some
non-strict functions.
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A Simple Way to Find the Least
Fixed Point

⊥v f (⊥) v f ( f (⊥)) v ·· · v LFP = LFP = · · ·

For each instant,

1. Start with all signals at ⊥
2. Evaluate all blocks (in some order)

3. If any change their outputs, repeat Step 2

f0 a
f1

b
f2

c

(a,b,c) = (⊥,⊥,⊥)

f0(⊥,⊥,⊥) = (0,⊥,⊥)

f1(0,⊥,⊥) = (0,1,⊥)

f2(0,1,⊥) = (0,1,0)

f2( f1( f0(0,1,0))) = (0,1,0)
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The Dependency Graph

Transform into single-output functions:

A
1

2

B
3

4

C 5

D
6

7

⇓

1

2

3

4

6

7

5
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The Scheduling Algorithm

1. Decompose into strongly-connected
components

2. Remove a head (set of vertices) from each
SCC, leaving a tail

3. Recurse on each tail
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Evaluating SCCs

Split a strongly-connected graph into a head and
tail:

H

T

↓

T
H

T

Good heads break T’s strong connectivity.
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Example

System

A
0

1

B

3

2

C

5

6

4

Graph

1 2

4

5

6

0

3

Head 1 2

Tail

4

5

6

0

3
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Schedules

1 2

4

5

6

0

3

4

5

6

0

3

(

head
︷︸︸︷

1 2 .

tail
︷ ︸︸ ︷

(

head
︷︸︸︷

4 .

tail
︷︸︸︷

5 )
︸ ︷︷ ︸

SCC

6 (

head
︷︸︸︷

0 .

tail
︷︸︸︷

3 )
︸ ︷︷ ︸

SCC

)

5 4 5 6 3 0 3 1 2 5 4 5 6 3 0 3 1 2 5 4 5 6 3 0 3
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Finding Good Heads

Must break strong connectivity—remove a border
of a set of vertices:

A

B

C

D

E

F

G

H

I

border of { A, B, C }
(vertices with incoming edges)

A

B

C

H

I
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Choosing Good Border Sets

Heuristic: “Grow” a set starting from a vertex and
greedily include the best border vertex:

1

3

4

6

7

52

Set Border

1 5

1 5 2 3

1 5 2 3

1 5 2 3 7

1 5 2 3 7 4 6

1 5 2 3 7 4 6
2 is better (3 would
increase border)
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Scheduling Results
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The Cost of Using the Heuristic
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Asymptotic Schedule Cost
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Conclusions

• Reactive embedded systems

– Run at the speed of their environment

– When as important as what

– Concurrent, deterministic, bounded,
discrete-valued

• The synchronous approach

– Discrete instants, globally synchronized

– Assumes instantaneous computation

• Heterogeneity in Ptolemy

– Domain: Blocks and Scheduler

– Hierarchical heterogeneity through
domain embedding

36



STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Conclusions (2)

• The SR domain

– Concurrent zero-delay blocks

– Semantics: the least fixed point of a
monotonic function on a CPO

– Values include “undefined” (⊥)

• Scheduling the SR Domain

– Use single-output dependency graph

– Decompose into SCCs; remove a head
from each; recurse

– Head is the border of the tail

– Choose a head by greedily growing a set
of vertices

– Fast, efficient. O(n1.25) execution
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