
Synchronous Reactive Systems

Stephen Edwards

sedwards@synopsys.com

Synopsys, Inc.

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Outline

• Synchronous Reactive Systems

• Heterogeneity and Ptolemy

• Semantics of the SR Domain

• Scheduling the SR Domain

2

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Reactive Embedded Systems

• Run at the speed of their environment

• When as important as what

• Concurrency for controlling the real world

• Determinism desired

• Limited resources (e.g., memory)

• Discrete-valued, time-varying

• Examples:

– Systems with user interfaces

∗ Digital Watches
∗ CD Players

– Real-time controllers

∗ Anti-lock braking systems
∗ Industrial process controllers

3

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

The Digital Approach

Why do we build digital systems?

• Voltage noise is unavoidable

• Discretization plus non-linearity can filter out
low-level noise completely

• Complex systems becomes predictable and
controllable

• Incredibly successful engineering practice

4

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

The Synchronous Approach

Idea: Use the same trick to filter out “time noise.”

• Noise: Uncontrollable and unpredictable
delays

• Discretization ⇔ global synchronization

• The synchrony hypothesis:

Things compute instantaneously

• Already widespread:

– Synchronous digital systems

– Finite-state machines

5

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

The Synchronous Model of Time

• Synchronous: time is an ordered sequence of
instants

• Reactive: Instants initiated by environmental
events

Time

System responds to each instant

Nothing happens between instants

• A system only needs to be “fast enough” to
simulate synchronous behavior

Time

6

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Who Uses This Stuff?

• Virtually all digital logic designed this way

• In software,

– Dassult (French aircraft manufacturer)
builds avionics with synchronous software

– Polis (Berkeley HW/SW codesign project)
uses Esterel for specifying EFSMs

– Cadence built product (Cierto VCC) based
on Polis

– TI exploring using synchronous software
for specifying/simulating DSPs

7

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Outline

• Synchronous Reactive Systems

• Heterogeneity and Ptolemy

• Semantics of the SR Domain

• Scheduling the SR Domain

8

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Heterogeneity

Why are there so many system description
languages?

• Want a succinct description for my system.

• “Let the language fit the problem”

Bigger systems have more diverse problems; use
a fitting language for each subproblem.

Want a heterogeneous coordination scheme that
allows many languages to communicate.

9

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Heterogeneity in Ptolemy

Ptolemy: A system for rapid prototyping of
heterogeneous systems

A Ptolemy domain (model of computation):

• Set of blocks:

Atomic pieces of computation that can be
“fired” (evaluated).

A C

B

D

• Scheduler:

Determines block firing order before or during
system execution.

A B C D

10

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Schedulers Support
Heterogeneity

• Scheduler does not know block contents, only
how to fire

• Block contents may be anything

• “Wormhole”: A block in one domain that
behaves as a system in another

• Hierarchical heterogeneity: Any system may
contain subsystems described in different
domains

11

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Outline

• Synchronous Reactive Systems

• Heterogeneity and Ptolemy

• Semantics of the SR Domain

• Scheduling the SR Domain

12

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

The SR Domain

• Reactive systems need concurrency

• The synchronous model makes for
deterministic concurrency

– No “interleaving” semantics

– Events are totally-ordered

– “Before,” “after,” “at the same time” all
well-defined and controllable

• Embedded systems need boundedness;
dynamic process creation a problem

• SR system: fixed set of synchronized,
communicating processes

13

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

The SR Domain (2)

Zero-delay blocks

Instantaneous communication
with feedback

Single driver, multiple receiver channels

• Block functions may change between instants
for time-varying behavior

• Blocks may be specified in any language

14

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Zero Delay and Feedback

How to maintain determinism?

A B

Which goes first?
Need an
order-invariant
semantics

Contradictory!
Need to attach
meaning to such
systems.

15

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Dealing with Feedback

Why bother at all?
Answer: Heterogeneity

• Cycles are usually broken by delay elements
at the lowest level

• Some schemes insist on this

• False feedback often appears at higher levels

• Data dependent cycles can appear when
sharing resources

• Virtually all cycles are “false,” yet must be
dealt with.

16

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Fixed-point Semantics are Natural
for Synchronous Specifications
with Feedback

Why a fixed point?

Self-reference:
The essence of a cycle

f (xt) = xt

System function Vector of signals

(composition of at time t

block functions) (zero delay)

fixed point ⇐⇒ stable state

determinism ⇐⇒ unique solution

17

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Unique Least Fixed Point
Theorem

A monotonic function on a complete
partial order (with ⊥) has a unique
least fixed point.

What does it mean to make the system function f

monotonic and the signal values a CPO?

18

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

The Least Fixed Point of What?

A

B

C

D
fI O

Interpret as ↘ ↗ Take LFP

B(I , f (I)) = f (I)

A

B

C

D

B

I

O O

19

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Vector of Signals is a CPO

Values along an upward path grow more defined.

⊥

1 0

“Undefined”
element

More Defined

Less Defined

Incomparable

11 01 10 00

⊥1 1⊥ 0⊥ ⊥0

⊥⊥

vector-valued extension

Formally, xv y if y is at least as defined as x.

20

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Adding ⊥ Is Enough

Any set {a1,a2, . . . ,an, . . .} can easily be “lifted” to
give a flat partial order:

a1 a2 a3 · · · an · · ·

⊥
A CPO for signals with pure events:

⊥

absent present

A CPO for valued events:

absent v1 v2 · · · vn · · ·

⊥
Why not absent v present?

present A then ... else ... end

Violates monotonicity

21

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Monotonic Block Functions

Giving a more defined input to a monotonic
function always gives a more defined output.

⊥

f (⊥)

f (f (⊥))

f (f (f (⊥)))

f (f (f (f (⊥))))

Formally, xv y implies f (x) v f (y).

A monotonic function never recants (“changes its
mind”).

22

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Many Languages Use Strict
Functions, Which Are Monotonic

A strict function:

g(. . . ,⊥, . . .
︸ ︷︷ ︸

inputs

) = (⊥, . . . ,⊥
︸ ︷︷ ︸

outputs

)

Outside:
A strict
monotonic
function

Inside:
Simple
“function call”
semantics

Most common imperative languages only
compute strict functions.

Danger: Cycles of strict functions
deadlock—fixed point is all ⊥—need some
non-strict functions.

23

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Outline

• Synchronous Reactive Systems

• Heterogeneity and Ptolemy

• Semantics of the SR Domain

• Scheduling the SR Domain

24

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

A Simple Way to Find the Least
Fixed Point

⊥v f (⊥) v f (f (⊥)) v ·· · v LFP = LFP = · · ·

For each instant,

1. Start with all signals at ⊥
2. Evaluate all blocks (in some order)

3. If any change their outputs, repeat Step 2

f0 a
f1

b
f2

c

(a,b,c) = (⊥,⊥,⊥)

f0(⊥,⊥,⊥) = (0,⊥,⊥)

f1(0,⊥,⊥) = (0,1,⊥)

f2(0,1,⊥) = (0,1,0)

f2(f1(f0(0,1,0))) = (0,1,0)

25

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

The Dependency Graph

Transform into single-output functions:

A
1

2

B
3

4

C 5

D
6

7

⇓

1

2

3

4

6

7

5

26

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

The Scheduling Algorithm

1. Decompose into strongly-connected
components

2. Remove a head (set of vertices) from each
SCC, leaving a tail

3. Recurse on each tail

27

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Evaluating SCCs

Split a strongly-connected graph into a head and
tail:

H

T

↓

T
H

T

Good heads break T’s strong connectivity.

28

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Example

System

A
0

1

B

3

2

C

5

6

4

Graph

1 2

4

5

6

0

3

Head 1 2

Tail

4

5

6

0

3

29

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Schedules

1 2

4

5

6

0

3

4

5

6

0

3

(

head
︷︸︸︷

1 2 .

tail
︷ ︸︸ ︷

(

head
︷︸︸︷

4 .

tail
︷︸︸︷

5)
︸ ︷︷ ︸

SCC

6 (

head
︷︸︸︷

0 .

tail
︷︸︸︷

3)
︸ ︷︷ ︸

SCC

)

5 4 5 6 3 0 3 1 2 5 4 5 6 3 0 3 1 2 5 4 5 6 3 0 3

30

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Finding Good Heads

Must break strong connectivity—remove a border
of a set of vertices:

A

B

C

D

E

F

G

H

I

border of { A, B, C }
(vertices with incoming edges)

A

B

C

H

I

31

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Choosing Good Border Sets

Heuristic: “Grow” a set starting from a vertex and
greedily include the best border vertex:

1

3

4

6

7

52

Set Border

1 5

1 5 2 3

1 5 2 3

1 5 2 3 7

1 5 2 3 7 4 6

1 5 2 3 7 4 6
2 is better (3 would
increase border)

32

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Scheduling Results

0.1s

1s

10s

100s

0 20 40 60 80 100 120

rs rsrsrs rsrsrs rsrsrsrs
rs
rsrs rsrsrs rsrsrsrs rsrsrsrsrsrs rs
rsrsrs
rsrs

rs

rsrsrs rsrsrs rs
rs

rs

rs
rs

rs
rs

rs

rsrs

rs

rs

rs
rs

rs

rsrs
rs
rsrs

rs

rs

rs

rs

rs

rs

rs rsrs

rs

rs

rs

rs

rsrsrsrs rs

rs

rs rsrs rs
rs

rsrs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rsrsrsrs

rs

rs

rsrs

rs

rs

rs
rs

rsrs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rs rs

rs

rs
rs

rs

rs

rs

rsrs

rs rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rsrs

rs

rs

ut ut
utut ut

utut ututututututut
ututut utut
utut utututututut ututututututut ututut

ututut ututututututut ututut ututut ut utututututut utututut
ututut utut

ut ututut
utututut ututut ut
ut

ut
ut
utut
ut

utut
ut
ut

utut
ut
ut ututut utut ut
ut ut utut
ut
ut

ututut ut
ut ut utut utut

ut

ut

utut
ututut ut

utut
ututut ut
ut

ut
ut

ututut
utut ut utut ut

utut ut ut
ut

ut ut
utut

ut
ut

ut

ut ututut ut utut
ut utut

ut
ut

ut
ut

ut

utut
utut

ut

ut

ut

ut
ut

ut
ut ut

ut

ut
ut

ut

ut
ut

ut
utut

utut ut
ut

utut
ut

ut

utut
ut

ut

ut
ut

ut ut utut

ut
ut

ut

ut

ut ut

ut
ut

ututut
ut

ut ut

ut
ut
ut
ut

ut

ut
utut

ut

ut
ut

ut

ut
ut ut

ut

ut ut

ut

ut

utut

ut

ut
ut utut

ut
ut

ut
ut

ut

ut

ut ut
ut

ut

utut
ut

ut

ut
ut

utut

ut ut

ut

ut
ut

ut
utut ut

ut

ut

ut
ut

ut

ut
ut ut

ut

ut
ut
utut

ut

ut

ut

ut

ut

ut
ut

ut
ut

ut

ut

ut
ut

ut

rs exactut sweep

Number of Outputs

T
im

e
to

C
om

pu
te

S
ch

ed
ul

e

0.1×

1×

10×

100×

1000×

S
pe

ed
up

O
ve

r
E

xa
ct

0.1s 1s 10s 100s

rs
rs
rsrsrs
rsrs
rsrsrsrs
rs
rsrsrs
rsrsrsrsrsrs
rsrsrs
rsrsrsrsrsrs
rsrsrs

rs

rsrsrsrsrsrsrs
rs

rs

rsrsrs
rs

rs

rsrs

rs

rs

rsrs

rs

rsrs
rs
rsrs

rs

rs

rs

rs

rs

rs

rsrsrs

rs

rs

rs

rs

rsrsrsrsrs

rs

rsrsrs
rsrs

rsrs
rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rsrs
rsrsrs

rs

rs

rsrs

rs

rs

rs
rs
rs
rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs

rs

rs

rsrs

rs

rs
rs

rs

rs

rs

rsrs

rs
rs

rs

rs

rs

rs rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs
rsrs

rs

rs

Time to Compute Exact

33

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

The Cost of Using the Heuristic

0% 50%

100%

150%

Increase in Cost of Schedule

0
20

40
60

80
rs

rs rs

rs
rs

rs
rs

rs

rsrsrs
rs

rs

rs
rs
rs

rs
rs

rsrs

rs

rsrs rs rs

rs

rs

rs
rs rsrs rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

rs
rs

rs

rs rsrs
rs

rs
rs rs

rs

rsrs

rs
rs

rs

rs
rs

rs

rs

rs

rs rs

rs
rs

rsrs
rs

rs

rs

rsrs

rs
rs

rs

rs

rs

rs

rs

rs
rs rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs rs

rs
rs

rs

rs

rs

rs

rsrs rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rsrs

rs

rs
rs

rs

rs

rs

rsrs
rs

rs

rs

rs

rs

rs

rs

rsrs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rsrs rs

rsrs

rs

rs

rs

rs

rs

rs

N
um

ber
ofO

utputs

5%
10%

15%
20%

25%Fraction
ofR

uns

34

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Asymptotic Schedule Cost

1

10

100

1000

1 10 100

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b
b

b

b

b
b

b

b

bb

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

bb

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

bb

b

b

b

b

b

b
b

b

b

b

b

b b

b

b

b

b
b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b

b

b
b

b
b

b

b

bb
bb
b

b
b b

b

b

bbb
b

b

b

n

n1.5n2

Number of Outputs

O
pt

im
al

S
ch

ed
ul

e
C

os
t

35

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Conclusions

• Reactive embedded systems

– Run at the speed of their environment

– When as important as what

– Concurrent, deterministic, bounded,
discrete-valued

• The synchronous approach

– Discrete instants, globally synchronized

– Assumes instantaneous computation

• Heterogeneity in Ptolemy

– Domain: Blocks and Scheduler

– Hierarchical heterogeneity through
domain embedding

36

STEPHENEDWARDS SYNCHRONOUSREACTIVE SYSTEMS

Conclusions (2)

• The SR domain

– Concurrent zero-delay blocks

– Semantics: the least fixed point of a
monotonic function on a CPO

– Values include “undefined” (⊥)

• Scheduling the SR Domain

– Use single-output dependency graph

– Decompose into SCCs; remove a head
from each; recurse

– Head is the border of the tail

– Choose a head by greedily growing a set
of vertices

– Fast, efficient. O(n1.25) execution

37

