
UNIVERSITY OF CALIFORNIA AT BERKELEY

iagrams.fm
Copyright © 1998, The Regents of the University of California
All rights reserved.

Design

 Lee

ey
CS
blockd
Block Diagrams for Modeling and

Edward A.
Professor

UC Berkel
Dept. of EE

 © 1998, p. 2 of 39

Abstract

trong human appeal,
out a design. A few
pecify systems have
diagrams can capture
stems. Others have

a havior of software.
n garnering support,

n achines, and object
gnizable as "block dia-
re are many possible

ial if these diagrams
explores some of the
nd weaknesses make

h le model is likely to
e recent innovations

equential control. So-
s.
b

V
m
a
s
a
f
R
i
m
g
c
a
p
t
e
w
c

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

isual depictions of electronic systems have always held a s
aking them extremely effective in conveying information ab
ttempts to use such depictions to completely and formally s
ucceeded, most notably in circuit design, where schematic
ll of the essential information needed to implement some sy
iled dramatically, for example flowcharts for capturing the be
ecently, a number of innovative visual formalisms have bee
cluding visual dataflow, hierarchical concurrent finite state m
odels. This talk focuses on the subset of these that are reco
rams." Such diagrams represent concurrent systems, but the
oncurrency semantics. Formalizing the semantics is essent
re to be used for system specification and design. This talk
ossible concurrency semantics, arguing that their strengths a
em complementary rather than competitive, so that no sing
merge as a universally useful model. I will also describe som
here concurrency models are combined with automata for s
alled hybrid systems are a special case of such combination

 © 1998, p. 3 of 39

Domains where Block Diagrams are Common

ite different.

TER

REGISTER

MULTIPLIER

MUX

SHIFTER

MUX

LATOR

ER
b

•

•

•

•

•

•

B

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

 Circuit schematics

 Computer architecture

 Dynamical systems

 Control theory

 Signal processing

 Communications

ut the meaning of these diagrams can be qu

REGIS

ACCUMU

ALU

SHIFT

SHIFTER

z-1 z-1 z-1 z-1

 © 1998, p. 4 of 39

Properties of Block Diagrams

uted

mputation”

s.
b

•

•

•

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

 Modular
• Large designs are composed of smaller designs

• Modules encapsulate specialized expertise

 Hierarchical
• Composite designs themselves become modules

• Modules may be very complicated

 Concurrent
• Modules logically operate simultaneously

• Implementations may be sequential or parallel or distrib

 Abstract
• The interaction of modules occurs within a “model of co

• Many interesting and useful MoCs have emerged

 Domain Specific
• Expertise encapsulated in MoCs and libraries of module

 © 1998, p. 5 of 39

Blocks and Signals

b

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

 Blocks represent activities
• May have inputs and outputs, or not

• May be implemented concurrently, or not

• Are conceptually concurrent

 Signals represent shared information
• Shared variables

• Functions of time

• Sequences of tokens

• Events in time

block

signal

A

B

C

D

 © 1998, p. 6 of 39

Specifying Blocks

ignals)

 other signals
b

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

 Denotationally:
• A relation between signals (constraints on acceptable s

• A function mapping input signals to output signals

e.g.

 Operationally:
• Given observations of some signals, how do we change

e.g.

u
H

y

Y z() H z()U z()=

x n 1+() Ax n() bu n()+=

y n() c
T

x n() du n()+=

 © 1998, p. 7 of 39

Semantics

s (asystem)

have in a partic-

 particular
b

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

The meaning of an interconnection of block

Denotational semantics:

The set of properties that signals must
ular interconnection

Operational semantics:

How to compute the signal values for a
interconnection

block

signal

A

B

C

D

 © 1998, p. 8 of 39

Determinacy

s that obeys the

 , there is at

 t least one

 e determinate.

mily of behav-
o

 means that

 behaviors.

b

•

•

•

•

N
i

H
b

N

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

A behaviorof a system is a set of signal value
semantics.

 A system isdeterminate if knowing the inputs
most one behavior.

 A system isreceptive if for all inputs there is a
behavior.

 A semantics is determinate if all systems ar

ondeterminacy can be useful inmodeling: a fa
rs is described and analyzed compactly.

owever, nondeterminism is risky indesign if it
ehavior is underspecified.

ondeterminacy can be viewed as a family of

 © 1998, p. 9 of 39

Some Candidate Semantics

s its place.
b

1
2
3
4
5
6
7

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

. Analog computers (differential equations)

. Discrete time (difference equations)

. Discrete-event systems

. Synchronous-reactive systems

. Process networks

. Dataflow

. Sequential processes that rendezvous

Basic claim of this talk: each of these ha

© 1998, p. 10 of 39

Essential Differences — Models of Time

chronous/reactive

⊥

⊥ ⊥ ⊥ ⊥⊥⊥

⊥ ⊥

m

ce of Memory , 1931
b

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

syn

continuous time

discrete time

ultirate discrete time

F1 F2 F3 F4

E1 E2 E3 E4

G1 G2 G3 G4

totally-ordered

partially-ordered discrete events

Salvador Dali, The Persisten

discrete events

© 1998, p. 11 of 39

Key Semantic Issues

 ior? More than

 point off.

 behavior? All
 some property?
d to know whether
cs (full abstraction).

 ntics as a block?
.

b

•

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

 Does a composition of blocks have a behav
one behavior?
• Typical hard case:

Denotationally, the behavior here is a signal that is fixed

 Can a simulation or analysis strategy find a
behaviors? A subset of behaviors satisfying
• The “strategy” is an operational semantics, and we nee

this semantics is the same as the denotational semanti

 Does a block diagram have the same sema
• This is sometimes called the “compositionality” property

f

© 1998, p. 12 of 39

Key Practical Issues

b

•

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

 Can it be simulated?
• Bounded memory

• Bounded time for at least a partial solution

• Simulation speed

 Can it be implemented?
• Bounded memory

• Bounded time for at least a partial solution

• Synthesis algorithms

 How many ways can it be implemented?
• Software vs. hardware

• Parallel vs. sequential

• Scheduling algorithms

• Avoiding overspeficiation

© 1998, p. 13 of 39

1. Analog Computers

t

rm

0.9x 0.9+
b

E

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

xample: First-order differential equation:

componen

real-valued function

wavefo

A

B

C

of a continuum

1

+

constant

∫
integral

gain

sum

0.9

x
ẋ =

© 1998, p. 14 of 39

Properties

elations

feedback loops)

iques
b

S

S

W

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

emantics:
• blocks are relations between functions of time

• fixed point is a set of functions of time satisfying these r

trengths:
• Accurate model for many physical systems

• Determinate under simple conditions (strict causality in

• Established and mature (approximate) simulation techn

eaknesses:
• Covers a narrow application domain

• Tightly bound to an implementation

• Relatively expensive to simulate

• Difficult to implement in software

© 1998, p. 15 of 39

2. Discrete Time Processing

t

a5x n 4–()+
b

E

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

xample: Difference equation:

componenA

B

C

discrete time signal

z-1 z-1 z-1 z-1
x n()

y n()
a1 a2 a3 a4 a5

y n() a1x n() a2x n 1–() a3x n 2–() a4x n 3–()+ + +=

© 1998, p. 16 of 39

Properties

g these relations

stems

feedback loops)
b

S

S

W

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

emantics:
• blocks are relations between functions of discrete time

• fixed point is a set of functions of discrete time satisfyin

trengths:
• Useful model for many embedded signal processing sy

• Determinate under simple conditions (strict causality in

• Easy simulation (cycle-based)

• Easy implementation (synchronous circuits or software)

eaknesses:
• Covers a narrow application domain

• Global synchrony may overspecify some systems

© 1998, p. 17 of 39

3. Discrete-Event Models

discrete points
at is usually a
ntities react to
logical order.
b

E
•

•

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

xample application areas:
 Communication networks

 Queueing systems

 Manufacturing systems

 Hardware architecture

entities

signal

[z1, z2, ...]

events

Events occur at
on a time line th
continuum. The e
events in chrono

[x1, x2, ...]

[y1, y2, ...]

A

B

C

© 1998, p. 18 of 39

Example: Hardware Architecture

controller
process

user interface
process

nnect

CODEC

audio/
video
b

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

control panel

ASIC microcontroller

real-time
operating
system

system interco

DSP
assembly

code

programmable
DSP

host port

memory interface

microwave,

network

microfluidic,
FPGA

MEMS

© 1998, p. 19 of 39

Properties

e)

feedback loops)

feedback loops)

e)
b

S

S

W

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

emantics:
• Signals are sets of events placed in time (finite or infinit

• Blocks are relations between signals

• Fixed point is a set of signals

trengths:
• Natural description of asynchronous digital hardware

• Global synchronization

• Determinate under simple conditions (strict causality in

• Simulatable under simple conditions (delta causality in

eaknesses:
• Expensive to implement in software

• May over-specify and/or over-model systems (global tim

© 1998, p. 20 of 39

Machinery for Studying Semantics of 1,2, and 3

 differ.

 r the existence

s programs
n find it.

2

b

•

•

E
w

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

 The Cantor metric:

,

where is the glb of the times where and

 Metric space theorems provide conditions fo
and uniqueness of fixed points.

xample result: VHDL (a DE language) permit
here a fixed point exists but no simulator ca

d s1 s2,() 1

2
τ-----=

τ s1 s

© 1998, p. 21 of 39

4. Synchronous/Reactive Models

f time
quence of

e signals are
point equation:

t, 1()

t, z()

t x y,()
b

A
•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

pplication areas:
 Anything with elaborate control logic

 User interfaces

module

signal

x

y

z

event

A discrete model o
progresses as a se
“ticks.” At a tick, th
defined by a fixed

x

y

z

f A

f B

f C,

=

A

B

C

© 1998, p. 22 of 39

Properties

)

xed points)
b

S

S

W

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

emantics:
• Each tick represents a new fixed point computation

• Convergence to fixed points (when possible) is finite

trengths:
• Good match for control-intensive systems

• Tightly synchronized

• Determinate in most cases (use constructive semantics

• Maps well to hardware and software

eaknesses:
• Computation-intensive systems are overspecified

• Modularity is compromised

• Causality loops are possible (no fixed point or multiple fi

• Causality loops are hard to detect

© 1998, p. 23 of 39

5. Process Networks

 r threads)

 s

 (to my knowl-
t implementa-

i ise (IMO).

l

b

P
•

•

P
e
t

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

ossible application areas:
 User interfaces (determinate replacement fo

 Asynchronous, multitasking, reactive system

rocess networks,per se, are not actually used
dge) today. But the understanding of efficien
ons is very recent, and they hold much prom

A

B

C

process

stream of tokens

channe

© 1998, p. 24 of 39

Properties

es

n

sses)

cesses)

ndecidable)
b

S

S

W

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

emantics:
• Blocks are relations between (possibly infinite) sequenc

• Operationally: sequences are constructed token by toke

• Any finite execution produces a prefix of the denotation

trengths:
• Loose synchronization (distributable)

• Determinate under simple conditions (monotonic proce

• Implementable under simple conditions (continuous pro

• Maps easily to threads, but much easier to use

• Turing complete (expressive)

eaknesses:
• Control-intensive systems are hard to specify

• Turing complete (deadlock and bounded memory are u

© 1998, p. 25 of 39

6. Dataflow

ocess is made up
ations).

 scheduling)

b

A
o

A
•

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

special case of process networks where a pr
f a sequence of firings (finite, atomic comput

pplication areas:
 Signal processing

 Computer architecture (dynamic instruction

 Compilers (an analysis technique)

actor

stream of tokens

tokens

A

B

C

© 1998, p. 26 of 39

Dataflow for Signal Processing

Author: Uwe
Trautwein,
Technical
University of
Ilmenau,
Germany
b

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

© 1998, p. 27 of 39

Properties

ons to get processes

ftware
b

S

S

W

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

emantics:
• Firing functions are composed using higher-order functi

• Decidable special case: “synchronous dataflow”

trengths:
• Good match for signal processing

• Loose synchronization (distributable)

• Determinate under simple conditions

• Special cases map well to hardware and embedded so

eaknesses:
• Control-intensive systems are hard to specify

© 1998, p. 28 of 39

7. Rendezvous Models

t rendezvous of
eceiver. Com-
buffered and
xamples
 CCS.
b

A
•

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

pplication areas:
 Client/server systems

 Object-request brokers

 Resource sharing

entities

signal

[z1, z2, ...]

events

Events represen
a sender and a r
munication is un
instantaneous. E
include CSP and

[x1, x2, ...]

[y1, y2, ...]

A

B

C

© 1998, p. 29 of 39

Properties
b

S

S

W

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

emantics:
• Rendezvous is atomic (indivisible)

• Traces (interleavings of rendezvous events)

trengths:
• Models resource sharing well

• Partial-order synchronization (distributable)

• Supports naturally nondeterminate interactions

eaknesses:
• Oversynchronizes some systems

• Difficult to make determinate (and useful)

© 1998, p. 30 of 39

A Key Property of Block Diagrams

 in application
e:

ically
b

A
a
•

•

•

•

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

They are Static!

 consequence is that they are typically used
reas where fixed algorithms prevail for all tim
 Circuits

 Computer architecture

 Dynamical systems

 Control theory

 Signal processing

 Communications

We can generalize them by hierarch
combining with automata.

© 1998, p. 31 of 39

Sequential Example — Finite State Machines

hen a transi-
e from one
 and actions
variants specify
 a state is
b

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

A/i

C/j

B/k

Strengths:
• Natural description of sequential control

• Behavior is decidable

• Can be made determinate (often is not, however)

• Easy to implement in hardware or software

Weaknesses:
• Awkward to specify numeric computation

• Size of the state space can get large

states

transitions

z/r

guard/action

Guards specify w
tion may be mad
state to another,
assert events. In
when remaining
allowed.

x/p

y/q

name/invariant

© 1998, p. 32 of 39

Mixing Control and Concurrency — *Charts

mantics
b

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

Choice of domain here determines concurrent se

FSM

FSM

© 1998, p. 33 of 39

Hybrid Systems

 g system

 puters

er):

e a concur-
e re.
b

•

•

T

H
r

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

 A discrete program combined with an analo

 A combination of automata and analog com

raditional syntax (example: leaking gas burn

ere, the differential equations hardly look lik
ncy model, but in fact, in a trivial way, they a

ẋ 1=
ẏ 1=

x 1≤
ż 1=

ẋ 1=
ẏ 1=
ż 1=

x:=0

x 30≥
x:=0

leaking not leaking

© 1998, p. 34 of 39

Alternative View of Hybrid Systems

ncy model and
.

z

b

*
a

F

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

charts with analog computers as the concurre
 particular style of nondeterminate automata

or example (leaking gas burner):

1 ∫
ẏ y

x 1≤
x:=0

x 30≥
x:=0leaking not leaking ∫

ż

x

1 ∫
ẋ x

1
ż

1 ∫
ẋ x

0
ż

© 1998, p. 35 of 39

In general

 are internally

 defined in a

 in the
ton.

 of the

 tem.

 ted (as in
he same the
omaton.
b

•

•

•

•

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

 A concurrent system contains modules that
automata.

 States of an automaton contain subsystems
concurrent semantics.

 Transitions and guards depend on variables
subsystems as well as inputs to the automa

 Transitions have actions on the subsystems
destination state.

 Multiple states may share the same subsys

 If multiple concurrent semantics can be nes
Ptolemy), then subsystems need not have t
semantics as the system containing the aut

© 1998, p. 36 of 39

Example: DE, Dataflow, and FSMs
b

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

Implemented by
Bilung Lee

© 1998, p. 37 of 39

Heterogeneous System-Level Specification & Modeling

tion)

hnologies)

ynthesis, &
b

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

problem level (heterogeneous models of computa

implementation level (heterogeneous implementation tec

mapping, s
modeling

© 1998, p. 38 of 39

Metamodeling

l

work

model
b

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

metamodeling framework

metamodel

semantic framework

model
component

metamode

semantic frame

component

© 1998, p. 39 of 39

More Information

detail and lots

cy)

)

b

T
o

h

•

•

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

lockdiagrams.fm

he following papers by the speaker give more
f references:

ttp://ptolemy.eecs.berkeley.edu/papers/...

 97/preliminaryStarcharts/

(on automata combined with concurren
 97/denotational/

(on comparing concurrency semantics
 97/dataflow/

(on the semantics of dataflow)
 98/realtime/

(on the semantics of discrete events)

	Block Diagrams for Modeling and Design
	Edward A. Lee Professor
	UC Berkeley Dept. of EECS

	Abstract
	Visual depictions of electronic systems have always held a strong human appeal, making them extre...

	Domains where Block Diagrams are Common
	• Circuit schematics
	• Computer architecture
	• Dynamical systems
	• Control theory
	• Signal processing
	• Communications
	But the meaning of these diagrams can be quite different.

	Properties of Block Diagrams
	• Modular
	• Large designs are composed of smaller designs
	• Modules encapsulate specialized expertise

	• Hierarchical
	• Composite designs themselves become modules
	• Modules may be very complicated

	• Concurrent
	• Modules logically operate simultaneously
	• Implementations may be sequential or parallel or distributed

	• Abstract
	• The interaction of modules occurs within a “model of computation”
	• Many interesting and useful MoCs have emerged

	• Domain Specific
	• Expertise encapsulated in MoCs and libraries of modules.

	Blocks and Signals
	• Blocks represent activities
	• May have inputs and outputs, or not
	• May be implemented concurrently, or not
	• Are conceptually concurrent

	• Signals represent shared information
	• Shared variables
	• Functions of time
	• Sequences of tokens
	• Events in time

	Specifying Blocks
	• Denotationally:
	• A relation between signals (constraints on acceptable signals)
	• A function mapping input signals to output signals

	e.g.
	• Operationally:
	• Given observations of some signals, how do we change other signals

	e.g.

	Semantics
	The meaning of an interconnection of blocks (a system)
	• Denotational semantics:
	The set of properties that signals must have in a particular interconnection

	• Operational semantics:
	How to compute the signal values for a particular interconnection

	Determinacy
	• A behavior of a system is a set of signal values that obeys the semantics.
	• A system is determinate if knowing the inputs, there is at most one behavior.
	• A system is receptive if for all inputs there is at least one behavior.
	• A semantics is determinate if all systems are determinate.
	Nondeterminacy can be useful in modeling: a family of behaviors is described and analyzed compactly.
	However, nondeterminism is risky in design if it means that behavior is underspecified.
	Nondeterminacy can be viewed as a family of behaviors.

	Some Candidate Semantics
	1. Analog computers (differential equations)
	2. Discrete time (difference equations)
	3. Discrete-event systems
	4. Synchronous-reactive systems
	5. Process networks
	6. Dataflow
	7. Sequential processes that rendezvous
	Basic claim of this talk: each of these has its place.

	Essential Differences — Models of Time
	Key Semantic Issues
	• Does a composition of blocks have a behavior? More than one behavior?
	• Typical hard case: Denotationally, the behavior here is a signal that is fixed point of f.

	• Can a simulation or analysis strategy find a behavior? All behaviors? A subset of behaviors sat...
	• The “strategy” is an operational semantics, and we need to know whether this semantics is the s...

	• Does a block diagram have the same semantics as a block?
	• This is sometimes called the “compositionality” property.

	Key Practical Issues
	• Can it be simulated?
	• Bounded memory
	• Bounded time for at least a partial solution
	• Simulation speed

	• Can it be implemented?
	• Bounded memory
	• Bounded time for at least a partial solution
	• Synthesis algorithms

	• How many ways can it be implemented?
	• Software vs. hardware
	• Parallel vs. sequential
	• Scheduling algorithms
	• Avoiding overspeficiation

	1. Analog Computers
	Example: First-order differential equation:

	Properties
	Semantics:
	• blocks are relations between functions of time
	• fixed point is a set of functions of time satisfying these relations

	Strengths:
	• Accurate model for many physical systems
	• Determinate under simple conditions (strict causality in feedback loops)
	• Established and mature (approximate) simulation techniques

	Weaknesses:
	• Covers a narrow application domain
	• Tightly bound to an implementation
	• Relatively expensive to simulate
	• Difficult to implement in software

	2. Discrete Time Processing
	Example: Difference equation:

	Properties
	Semantics:
	• blocks are relations between functions of discrete time
	• fixed point is a set of functions of discrete time satisfying these relations

	Strengths:
	• Useful model for many embedded signal processing systems
	• Determinate under simple conditions (strict causality in feedback loops)
	• Easy simulation (cycle-based)
	• Easy implementation (synchronous circuits or software)

	Weaknesses:
	• Covers a narrow application domain
	• Global synchrony may overspecify some systems

	3. Discrete-Event Models
	Events occur at discrete points on a time line that is usually a continuum. The entities react to...
	Example application areas:
	• Communication networks
	• Queueing systems
	• Manufacturing systems
	• Hardware architecture

	Example: Hardware Architecture
	Properties
	Semantics:
	• Signals are sets of events placed in time (finite or infinite)
	• Blocks are relations between signals
	• Fixed point is a set of signals

	Strengths:
	• Natural description of asynchronous digital hardware
	• Global synchronization
	• Determinate under simple conditions (strict causality in feedback loops)
	• Simulatable under simple conditions (delta causality in feedback loops)

	Weaknesses:
	• Expensive to implement in software
	• May over-specify and/or over-model systems (global time)

	Machinery for Studying Semantics of 1,2, and 3
	• The Cantor metric: , where is the glb of the times where and differ.
	• Metric space theorems provide conditions for the existence and uniqueness of fixed points.
	Example result: VHDL (a DE language) permits programs where a fixed point exists but no simulator...

	4. Synchronous/Reactive Models
	A discrete model of time progresses as a sequence of “ticks.” At a tick, the signals are defined ...
	Application areas:
	• Anything with elaborate control logic
	• User interfaces

	Properties
	Semantics:
	• Each tick represents a new fixed point computation
	• Convergence to fixed points (when possible) is finite

	Strengths:
	• Good match for control-intensive systems
	• Tightly synchronized
	• Determinate in most cases (use constructive semantics)
	• Maps well to hardware and software

	Weaknesses:
	• Computation-intensive systems are overspecified
	• Modularity is compromised
	• Causality loops are possible (no fixed point or multiple fixed points)
	• Causality loops are hard to detect

	5. Process Networks
	Possible application areas:
	• User interfaces (determinate replacement for threads)
	• Asynchronous, multitasking, reactive systems
	Process networks, per se, are not actually used (to my knowledge) today. But the understanding of...

	Properties
	Semantics:
	• Blocks are relations between (possibly infinite) sequences
	• Operationally: sequences are constructed token by token
	• Any finite execution produces a prefix of the denotation

	Strengths:
	• Loose synchronization (distributable)
	• Determinate under simple conditions (monotonic processes)
	• Implementable under simple conditions (continuous processes)
	• Maps easily to threads, but much easier to use
	• Turing complete (expressive)

	Weaknesses:
	• Control-intensive systems are hard to specify
	• Turing complete (deadlock and bounded memory are undecidable)

	6. Dataflow
	A special case of process networks where a process is made up of a sequence of firings (finite, a...
	Application areas:
	• Signal processing
	• Computer architecture (dynamic instruction scheduling)
	• Compilers (an analysis technique)

	Dataflow for Signal Processing
	Author: Uwe Trautwein, Technical University of Ilmenau, Germany

	Properties
	Semantics:
	• Firing functions are composed using higher-order functions to get processes
	• Decidable special case: “synchronous dataflow”

	Strengths:
	• Good match for signal processing
	• Loose synchronization (distributable)
	• Determinate under simple conditions
	• Special cases map well to hardware and embedded software

	Weaknesses:
	• Control-intensive systems are hard to specify

	7. Rendezvous Models
	Events represent rendezvous of a sender and a receiver. Communication is unbuffered and instantan...
	Application areas:
	• Client/server systems
	• Object-request brokers
	• Resource sharing

	Properties
	Semantics:
	• Rendezvous is atomic (indivisible)
	• Traces (interleavings of rendezvous events)

	Strengths:
	• Models resource sharing well
	• Partial-order synchronization (distributable)
	• Supports naturally nondeterminate interactions

	Weaknesses:
	• Oversynchronizes some systems
	• Difficult to make determinate (and useful)

	A Key Property of Block Diagrams
	They are Static!
	A consequence is that they are typically used in application areas where fixed algorithms prevail...
	• Circuits
	• Computer architecture
	• Dynamical systems
	• Control theory
	• Signal processing
	• Communications

	We can generalize them by hierarchically combining with automata.

	Sequential Example — Finite State Machines
	Strengths:
	• Natural description of sequential control
	• Behavior is decidable
	• Can be made determinate (often is not, however)
	• Easy to implement in hardware or software

	Weaknesses:
	• Awkward to specify numeric computation
	• Size of the state space can get large

	Mixing Control and Concurrency — *Charts
	Hybrid Systems
	• A discrete program combined with an analog system
	• A combination of automata and analog computers
	Traditional syntax (example: leaking gas burner):
	Here, the differential equations hardly look like a concurrency model, but in fact, in a trivial ...

	Alternative View of Hybrid Systems
	*charts with analog computers as the concurrency model and a particular style of nondeterminate a...
	For example (leaking gas burner):

	In general
	• A concurrent system contains modules that are internally automata.
	• States of an automaton contain subsystems defined in a concurrent semantics.
	• Transitions and guards depend on variables in the subsystems as well as inputs to the automaton.
	• Transitions have actions on the subsystems of the destination state.
	• Multiple states may share the same subsystem.
	• If multiple concurrent semantics can be nested (as in Ptolemy), then subsystems need not have t...

	Example: DE, Dataflow, and FSMs
	Heterogeneous System-Level Specification & Modeling
	Metamodeling
	More Information
	The following papers by the speaker give more detail and lots of references:
	http://ptolemy.eecs.berkeley.edu/papers/...
	• 97/preliminaryStarcharts/
	(on automata combined with concurrency)

	• 97/denotational/
	(on comparing concurrency semantics)

	• 97/dataflow/
	(on the semantics of dataflow)

	• 98/realtime/
	(on the semantics of discrete events)

