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Abstract

Visual depictions of electronic systems have always held a strong human appeal,
making them extremely effective in conveying information about a design. A few
attempts to use such depictions to completely and formally specify systems have
succeeded, most notably in circuit design, where schematic diagrams can capture
all of the essential information needed to implement some systems. Others have
failed dramatically, for example flowcharts for capturing the behavior of software.
Recently, a number of innovative visual formalisms have been garnering support,
including visual dataflow, hierarchical concurrent finite state machines, and object
models. This talk focuses on the subset of these that are recognizable as "block dia
grams." Such diagrams represent concurrent systems, but there are many possible
concurrency semantics. Formalizing the semantics is essential if these diagrams
are to be used for system specification and design. This talk explores some of the
possible concurrency semantics, arguing that their strengths and weaknesses maks
them complementary rather than competitive, so that no single model is likely to
emerge as a universally useful model. | will also describe some recent innovations
where concurrency models are combined with automata for sequential control. So-
called hybrid systems are a special case of such combinations.

blockdiagrams.fm © 1998, p. 2 of 39
UNIVERSITY OF CALIFORNIA AT BERKELEY




Domains where Block Diagrams are Common

Circuit schematics
Computer architecture
Dynamical systems
Control theory

Signal processing

Communications
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Properties of Block Diagrams

Modular

» Large designs are composed of smaller designs
* Modules encapsulate specialized expertise
Hierarchical

» Composite designs themselves become modules
* Modules may be very complicated
Concurrent

* Modules logically operate simultaneously
* Implementations may be sequential or parallel or distributed

Abstract

* The interaction of modules occurs within a “model of computation”
* Many interesting and useful MoCs have emerged

Domain Specific
» EXxpertise encapsulated in MoCs and libraries of modules.
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Blocks and Signals

Blocks represent activities

* May have inputs and outputs, or not
* May be implemented concurrently, or not
» Are conceptually concurrent

Signals represent shared information

e Shared variables
* Functions of time
e Sequences of tokens

e Events in time
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Specifying Blocks

e Denotationally:

» A relation between signals (constraints on acceptable signals)
A function mapping input signals to output signals

e.0.Y(2 = H(2)U(2)
e Operationally:

» Given observations of some signals, how do we change other signals

e.g.x(n+1) = Ax(n) + bu(n)

T
y(n) = € x(n) +du(n)
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Semantics

The meaningof an interconnection of blocks (asysten)

The set of properties that signals must have in a partic-
ular interconnection

How to compute the signal values for a particular
Interconnection

blockdiagrams.fm © 1998, p. 7 of 39
UNIVERSITY OF CALIFORNIA AT BERKELEY




Determinacy

A behaviorof a system is a set of signal values that obeys th
semantics.

A system isdeterminateif knowing the inputs, there is at
most one behavior.

A system igreceptiveif for all inputs there is at least one
behavior.

A semantics is determinate If all systems are determinate.

However, nondeterminism is risky indesignif it means that
behavior is underspecified.

Nondeterminacy can be viewed as a family of behaviors.
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Some Candidate Semantics

Analog computers (differential equations)
Discrete time (difference equations)
Discrete-event systems
Synchronous-reactive systems

Process networks

Dataflow

Sequential processes that rendezvous

Basic claim of this talk: each of these has its place.
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Essential Differences — Models of Time
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Key Semantic Issues

* Does a composition of blocks have a behavior? More than
one behavior?

» Typical hard case:

Denotationally, the behavior here is a signal that is fixed point df

e Can a simulation or analysis strategy find a behavior? All
behaviors? A subset of behaviors satisfying some property"

* The “strategy” is an operational semantics, and we need to know whether
this semantics is the same as the denotational semantics (full abstraction).

* Does a block diagram have the same semantics as a block

* This is sometimes called the “compositionality” property.
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Key Practical Issues

e Can it be simulated?

* Bounded memory
* Bounded time for at least a partial solution
e Simulation speed

e Can it be implemented?

* Bounded memory
* Bounded time for at least a partial solution
» Synthesis algorithms

« How many ways can it be implemented?

Software vs. hardware
Parallel vs. sequential
Scheduling algorithms
Avoiding overspeficiation
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1. Analog Computers

component

b«» waveform

real-valued function
of a continuum

Example: First-order differential equation:

constant

X = 0.9x+0.9
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Properties

Semantics:

» blocks are relations between functions of time
 fixed point is a set of functions of time satisfying these relations

Strengths:
» Accurate model for many physical systems

» Determinate under simple conditions (strict causality in feedback loops)
» Established and mature (approximate) simulation techniques

Weaknesses:

» Covers a narrow application domain
 Tightly bound to an implementation
» Relatively expensive to simulate

« Difficult to implement in software
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2. Discrete Time Processing

component

e

discrete time signal

Example: Difference equation:

y(n) = a;x(n) + a,x(n—1) + agx(n-2) +a,x(n-3) +asx(n—4)
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Properties

Semantics:

* blocks are relations between functions of discrete time
 fixed point is a set of functions of discrete time satisfying these relations

Strengths:
» Useful model for many embedded signal processing systems
» Determinate under simple conditions (strict causality in feedback loops)
e Easy simulation (cycle-based)
» Easy implementation (synchronous circuits or software)

Weaknesses:

» Covers a narrow application domain
» Global synchrony may overspecify some systems
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3. Discrete-Event Models

Events occur at discrete points
on a time line that is usually a
continuum. The entities react to
events in chronological order.

Example application areas:
« Communication networks
* Queueing systems

« Manufacturing systems

e Hardware architecture
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Example: Hardware Architecture
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Properties

Semantics:
» Signals are sets of events placed in time (finite or infinite)
» Blocks are relations between signals
* Fixed point is a set of signals

Strengths:
» Natural description of asynchronous digital hardware
e Global synchronization
» Determinate under simple conditions (strict causality in feedback loops)
o Simulatable under simple conditions (delta causality in feedback loops)

Weaknesses:

* EXxpensive to implement in software
* May over-specify and/or over-model systems (global time)
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Machinery for Studying Semantics of 1,2, and 3

e The Cantor metric:

d(sy,s) = =,
2

where T Is the glb of the times whers; and, differ.

* Metric space theorems provide conditions for the existence
and unigueness of fixed points.
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4. Synchronous/Reactive Models

A discrete model of time

module progresses as a sequence of
“ticks.” At a tick, the signals are
defined by a fixed point equation:

fadl)
fB, (2)

o ()

Application areas:
« Anything with elaborate control logic
» User interfaces
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Properties

Semantics:

e Each tick represents a new fixed point computation
» Convergence to fixed points (when possible) is finite

Strengths:
e Good match for control-intensive systems
 Tightly synchronized
* Determinate in most cases (use constructive semantics)
* Maps well to hardware and software

Weaknesses:

o Computation-intensive systems are overspecified

e Modularity is compromised

o Causality loops are possible (no fixed point or multiple fixed points)
» Causality loops are hard to detect
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5. Process Networks

pProcess

channel

stream of tokens

Possible application areas:
« User interfaces (determinate replacement for threads)

o Asynchronous, multitasking, reactive systems

Process networksper se are not actually used (to my knowl-
edge) today. But the understanding of efficient implementa-
tions is very recent, and they hold much promise (IMO).
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Properties

Semantics:
» Blocks are relations between (possibly infinite) sequences
» Operationally: sequences are constructed token by token
* Any finite execution produces a prefix of the denotation

Strengths:
» Loose synchronization (distributable)
Determinate under simple conditions (monotonic processes)
Implementable under simple conditions (continuous processes)
Maps easily to threads, but much easier to use
Turing complete (expressive)

Weaknesses:

» Control-intensive systems are hard to specify
e Turing complete (deadlock and bounded memory are undecidable)
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6. Dataflow

tokens

stream of tokens

A special case of process networks where a process is made u
of a sequence of firings (finite, atomic computations).

Application areas:
« Signal processing
o Computer architecture (dynamic instruction scheduling)

 Compilers (an analysis technique)
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Dataflow for Signal Processing
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Properties

Semantics:

 Firing functions are composed using higher-order functions to get processes
* Decidable special case: “synchronous dataflow”

Strengths:

» Good match for signal processing
» Loose synchronization (distributable)
» Determinate under simple conditions

» Special cases map well to hardware and embedded software

Weaknesses:

» Control-intensive systems are hard to specify
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7. Rendezvous Models

Events represent rendezvous of
a sender and a receiver. Com-
munication is unbuffered and
iInstantaneous. Examples
include CSP and CCS.

Application areas:
o Client/server systems

* Object-request brokers
* Resource sharing
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Properties

Semantics:

* Rendezvous is atomic (indivisible)
» Traces (interleavings of rendezvous events)

Strengths:

* Models resource sharing well
 Partial-order synchronization (distributable)
e Supports naturally nondeterminate interactions

Weaknesses:

» Oversynchronizes some systems
o Difficult to make determinate (and useful)
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A Key Property of Block Diagrams

They are Static!

A consequence is that they are typically used in application
areas where fixed algorithms prevail for all time:

o Circuits

« Computer architecture

 Dynamical systems
Control theory
Signal processing
Communications

We can generalize them by hierarchically
combining with automata.
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Sequential Example — Finite State Machines

Guards specify when a transi-
«/ tion may be made from one
P states state to another, and actions
assert events. Invariants specify

y/q N when remaining a state is
transitions allowed.

zIr

guard/action

Strengths:
» Natural description of sequential control

* Behavior is decidable
« Can be made determinate (often is not, however)
« Easy to implement in hardware or software

Weaknesses:
« Awkward to specify numeric computation
» Size of the state space can get large
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Mixing Control and Concurrency — *Charts
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Hybrid Systems

« A discrete program combined with an analog system
« A combination of automata and analog computers

Traditional syntax (example: leaking gas burner):

leaking not leaking

Here, the differential equations hardly look like a concur-
rency model, but in fact, in a trivial way, they are.
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Alternative View of Hybrid Systems

*charts with analog computers as the concurrency model and
a particular style of nondeterminate automata.

For example (leaking gas burner):
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In general

A concurrent system contains modules that are internally
automata.

States of an automaton contain subsystems defined in a
concurrent semantics.

Transitions and guards depend on variables in the
subsystems as well as inputs to the automaton.

Transitions have actions on the subsystems of the
destination state.

Multiple states may share the same subsystem.
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Example: DE, Dataflow, and FSMs
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Heterogeneous System-Level Specification & Modeling

problem level (heterogeneous models of computation)

mapping, synthesié, &
modeling

plnitny

rograrvmanie
P QDSF‘ R

memory neriace

/ control panel

implementation level (heterogeneous implementation technologies)
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Metamodeling

_ semantic framework
semantic framework

del model
(1ode component
component
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More Information

The following papers by the speaker give more detail and lots
of references:

http://ptolemy.eecs.berkeley.edu/papers/...

97/preliminaryStarcharts/

(on automata combined with concurrency)
97/denotational/

(on comparing concurrency semantics)
97/dataflow/

(on the semantics of dataflow)
O8/realtime/

(on the semantics of discrete events)
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	Block Diagrams for Modeling and Design
	Edward A. Lee Professor
	UC Berkeley Dept. of EECS

	Abstract
	Visual depictions of electronic systems have always held a strong human appeal, making them extre...

	Domains where Block Diagrams are Common
	• Circuit schematics
	• Computer architecture
	• Dynamical systems
	• Control theory
	• Signal processing
	• Communications
	But the meaning of these diagrams can be quite different.


	Properties of Block Diagrams
	• Modular
	• Large designs are composed of smaller designs
	• Modules encapsulate specialized expertise

	• Hierarchical
	• Composite designs themselves become modules
	• Modules may be very complicated

	• Concurrent
	• Modules logically operate simultaneously
	• Implementations may be sequential or parallel or distributed

	• Abstract
	• The interaction of modules occurs within a “model of computation”
	• Many interesting and useful MoCs have emerged

	• Domain Specific
	• Expertise encapsulated in MoCs and libraries of modules.


	Blocks and Signals
	• Blocks represent activities
	• May have inputs and outputs, or not
	• May be implemented concurrently, or not
	• Are conceptually concurrent

	• Signals represent shared information
	• Shared variables
	• Functions of time
	• Sequences of tokens
	• Events in time


	Specifying Blocks
	• Denotationally:
	• A relation between signals (constraints on acceptable signals)
	• A function mapping input signals to output signals

	e.g.
	• Operationally:
	• Given observations of some signals, how do we change other signals


	e.g.

	Semantics
	The meaning of an interconnection of blocks (a system)
	• Denotational semantics:
	The set of properties that signals must have in a particular interconnection

	• Operational semantics:
	How to compute the signal values for a particular interconnection



	Determinacy
	• A behavior of a system is a set of signal values that obeys the semantics.
	• A system is determinate if knowing the inputs, there is at most one behavior.
	• A system is receptive if for all inputs there is at least one behavior.
	• A semantics is determinate if all systems are determinate.
	Nondeterminacy can be useful in modeling: a family of behaviors is described and analyzed compactly.
	However, nondeterminism is risky in design if it means that behavior is underspecified.
	Nondeterminacy can be viewed as a family of behaviors.


	Some Candidate Semantics
	1. Analog computers (differential equations)
	2. Discrete time (difference equations)
	3. Discrete-event systems
	4. Synchronous-reactive systems
	5. Process networks
	6. Dataflow
	7. Sequential processes that rendezvous
	Basic claim of this talk: each of these has its place.

	Essential Differences — Models of Time
	Key Semantic Issues
	• Does a composition of blocks have a behavior? More than one behavior?
	• Typical hard case: Denotationally, the behavior here is a signal that is fixed point of f.

	• Can a simulation or analysis strategy find a behavior? All behaviors? A subset of behaviors sat...
	• The “strategy” is an operational semantics, and we need to know whether this semantics is the s...

	• Does a block diagram have the same semantics as a block?
	• This is sometimes called the “compositionality” property.


	Key Practical Issues
	• Can it be simulated?
	• Bounded memory
	• Bounded time for at least a partial solution
	• Simulation speed

	• Can it be implemented?
	• Bounded memory
	• Bounded time for at least a partial solution
	• Synthesis algorithms

	• How many ways can it be implemented?
	• Software vs. hardware
	• Parallel vs. sequential
	• Scheduling algorithms
	• Avoiding overspeficiation


	1. Analog Computers
	Example: First-order differential equation:

	Properties
	Semantics:
	• blocks are relations between functions of time
	• fixed point is a set of functions of time satisfying these relations

	Strengths:
	• Accurate model for many physical systems
	• Determinate under simple conditions (strict causality in feedback loops)
	• Established and mature (approximate) simulation techniques

	Weaknesses:
	• Covers a narrow application domain
	• Tightly bound to an implementation
	• Relatively expensive to simulate
	• Difficult to implement in software


	2. Discrete Time Processing
	Example: Difference equation:

	Properties
	Semantics:
	• blocks are relations between functions of discrete time
	• fixed point is a set of functions of discrete time satisfying these relations

	Strengths:
	• Useful model for many embedded signal processing systems
	• Determinate under simple conditions (strict causality in feedback loops)
	• Easy simulation (cycle-based)
	• Easy implementation (synchronous circuits or software)

	Weaknesses:
	• Covers a narrow application domain
	• Global synchrony may overspecify some systems


	3. Discrete-Event Models
	Events occur at discrete points on a time line that is usually a continuum. The entities react to...
	Example application areas:
	• Communication networks
	• Queueing systems
	• Manufacturing systems
	• Hardware architecture

	Example: Hardware Architecture
	Properties
	Semantics:
	• Signals are sets of events placed in time (finite or infinite)
	• Blocks are relations between signals
	• Fixed point is a set of signals

	Strengths:
	• Natural description of asynchronous digital hardware
	• Global synchronization
	• Determinate under simple conditions (strict causality in feedback loops)
	• Simulatable under simple conditions (delta causality in feedback loops)

	Weaknesses:
	• Expensive to implement in software
	• May over-specify and/or over-model systems (global time)


	Machinery for Studying Semantics of 1,2, and 3
	• The Cantor metric: , where is the glb of the times where and differ.
	• Metric space theorems provide conditions for the existence and uniqueness of fixed points.
	Example result: VHDL (a DE language) permits programs where a fixed point exists but no simulator...


	4. Synchronous/Reactive Models
	A discrete model of time progresses as a sequence of “ticks.” At a tick, the signals are defined ...
	Application areas:
	• Anything with elaborate control logic
	• User interfaces

	Properties
	Semantics:
	• Each tick represents a new fixed point computation
	• Convergence to fixed points (when possible) is finite

	Strengths:
	• Good match for control-intensive systems
	• Tightly synchronized
	• Determinate in most cases (use constructive semantics)
	• Maps well to hardware and software

	Weaknesses:
	• Computation-intensive systems are overspecified
	• Modularity is compromised
	• Causality loops are possible (no fixed point or multiple fixed points)
	• Causality loops are hard to detect


	5. Process Networks
	Possible application areas:
	• User interfaces (determinate replacement for threads)
	• Asynchronous, multitasking, reactive systems
	Process networks, per se, are not actually used (to my knowledge) today. But the understanding of...


	Properties
	Semantics:
	• Blocks are relations between (possibly infinite) sequences
	• Operationally: sequences are constructed token by token
	• Any finite execution produces a prefix of the denotation

	Strengths:
	• Loose synchronization (distributable)
	• Determinate under simple conditions (monotonic processes)
	• Implementable under simple conditions (continuous processes)
	• Maps easily to threads, but much easier to use
	• Turing complete (expressive)

	Weaknesses:
	• Control-intensive systems are hard to specify
	• Turing complete (deadlock and bounded memory are undecidable)


	6. Dataflow
	A special case of process networks where a process is made up of a sequence of firings (finite, a...
	Application areas:
	• Signal processing
	• Computer architecture (dynamic instruction scheduling)
	• Compilers (an analysis technique)

	Dataflow for Signal Processing
	Author: Uwe Trautwein, Technical University of Ilmenau, Germany

	Properties
	Semantics:
	• Firing functions are composed using higher-order functions to get processes
	• Decidable special case: “synchronous dataflow”

	Strengths:
	• Good match for signal processing
	• Loose synchronization (distributable)
	• Determinate under simple conditions
	• Special cases map well to hardware and embedded software

	Weaknesses:
	• Control-intensive systems are hard to specify


	7. Rendezvous Models
	Events represent rendezvous of a sender and a receiver. Communication is unbuffered and instantan...
	Application areas:
	• Client/server systems
	• Object-request brokers
	• Resource sharing

	Properties
	Semantics:
	• Rendezvous is atomic (indivisible)
	• Traces (interleavings of rendezvous events)

	Strengths:
	• Models resource sharing well
	• Partial-order synchronization (distributable)
	• Supports naturally nondeterminate interactions

	Weaknesses:
	• Oversynchronizes some systems
	• Difficult to make determinate (and useful)


	A Key Property of Block Diagrams
	They are Static!
	A consequence is that they are typically used in application areas where fixed algorithms prevail...
	• Circuits
	• Computer architecture
	• Dynamical systems
	• Control theory
	• Signal processing
	• Communications

	We can generalize them by hierarchically combining with automata.

	Sequential Example — Finite State Machines
	Strengths:
	• Natural description of sequential control
	• Behavior is decidable
	• Can be made determinate (often is not, however)
	• Easy to implement in hardware or software

	Weaknesses:
	• Awkward to specify numeric computation
	• Size of the state space can get large


	Mixing Control and Concurrency — *Charts
	Hybrid Systems
	• A discrete program combined with an analog system
	• A combination of automata and analog computers
	Traditional syntax (example: leaking gas burner):
	Here, the differential equations hardly look like a concurrency model, but in fact, in a trivial ...


	Alternative View of Hybrid Systems
	*charts with analog computers as the concurrency model and a particular style of nondeterminate a...
	For example (leaking gas burner):

	In general
	• A concurrent system contains modules that are internally automata.
	• States of an automaton contain subsystems defined in a concurrent semantics.
	• Transitions and guards depend on variables in the subsystems as well as inputs to the automaton.
	• Transitions have actions on the subsystems of the destination state.
	• Multiple states may share the same subsystem.
	• If multiple concurrent semantics can be nested (as in Ptolemy), then subsystems need not have t...

	Example: DE, Dataflow, and FSMs
	Heterogeneous System-Level Specification & Modeling
	Metamodeling
	More Information
	The following papers by the speaker give more detail and lots of references:
	http://ptolemy.eecs.berkeley.edu/papers/...
	• 97/preliminaryStarcharts/
	(on automata combined with concurrency)

	• 97/denotational/
	(on comparing concurrency semantics)

	• 97/dataflow/
	(on the semantics of dataflow)

	• 98/realtime/
	(on the semantics of discrete events)



