
Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 1 of 13lec17.fm E. A. Lee

Undecidability

The Halting Problem

It is undecidable whether a Turing
machine terminates.

The Finite Tape Problem

It is undecidable whether a Turing
machine can execute with finite
memory.

“Undecidable” means that no algo-
rithm can decidein finite time for all
instances.

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 2 of 13lec17.fm E. A. Lee

One Solution — Limit the Model of Computation

• Static dataflow [Dennis]

• Well-behaved dataflow [Gao]

• K-bounded loops [Culler]

• Computation graphs [Karp & Miller]

• Synchronous dataflow [Lee & Messerschmitt]

• Synchronous languages [Lustre]

Turing Complete

• Boolean dataflow [Buck]

• Dynamic dataflow [Dennis, Arvind, ...]

• Kahn process networks [Kahn]

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 3 of 13lec17.fm E. A. Lee

Another Solution — Solve the Undecidable Problem

The Boolean Dataflow Solution

Quasi-Static scheduler: A finite list ofannotated firings is exe-
cuted forever. The annotations are Boolean conditions under
which the firing should occur.

The finite schedule must return the graph to its original state
for all outcomes of the Booleans.

• It is undecidable whether such a schedule exists.

• Heuristics search for such a schedule, and fall back on
dynamic scheduling if they fail to find one.

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 4 of 13lec17.fm E. A. Lee

Dynamic scheduling

A run-time algorithm determines which actor fires next.

The problem:

Does there exist an algorithm that satisfies the bounded mem-
ory criterion and deadlock constraint that can maken firing
decisions in O(n) time for any n?

Notes:

• An infinite execution takes infinite time.

• An infinite execution must make steady progress.

• If an execution stops, there must be no enabled actors.

• If an execution consumes unbounded memory, there must
be no execution with bounded memory.

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 5 of 13lec17.fm E. A. Lee

Policies that Fail

1. Fairness

• All actors should execute infinitely often, if possible.

• All data produced on an arc should be consumed.

2. Data-driven

• Fire actors enabled by data at their inputs.

3. Demand-driven

• Fire actors whose outputs are needed.

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 6 of 13lec17.fm E. A. Lee

Fairness

S
E

LE
C

T

T

F

CONSTANT
TRUE

A

B

C

This fails under the policy
that all actors should exe-
cute infinitely often, if
possible, because A and B
are always enabled.

BA

This could fail under the
policy that all data pro-
duced on an arc should
be consumed.

2 1

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 7 of 13lec17.fm E. A. Lee

Data-Driven

S
E

LE
C

T

T

F

A

B

C

D

A data-driven policy gives no clue about how
often to fire A and B.

Note that a common solution to this is to say that A and B repre-
sent inputs from the outside, and the outside should determine
how often they fire.This is not satisfactory.

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 8 of 13lec17.fm E. A. Lee

The least fixed point may not be the desired solution

The least fixed point solution will (probably) have infinite
sequences on all three source outputs.

This suggests a demand driven approach (which also does not
necesarily find the least fixed point solution), but ...

S
E

LE
C

T

T

F

A

B

C

D

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 9 of 13lec17.fm E. A. Lee

Demand-Driven

B

C

A

D

S
W

IT
C

H T

F

A demand-driven policy gives no clue about how
often to issue demands from B and C.

Note that a common solution to this is to say that B and C repre-
sent outputs to the outside, and the outside should determine how
often they issue they demands.This is not satisfactory.

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 10 of 13lec17.fm E. A. Lee

Balanced Data/Demand Driven Execution

• Eazyflow [Jagannathan and Ashcroft]

• Anticipation coefficients [Kahn and McQueen]

• Ptolemy DDF scheduler (before version 0.6) [Ha]

All of these fail because they require fixed thresholds to deter-
mine whether streams are eager or lazy. The thresholds can-
not be fixed [Parks].

We solve the problem first for Kahn process networks (with
blocking reads), then specialize to dataflow graphs.

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 11 of 13lec17.fm E. A. Lee

Bounded Memory Lemma

Bounded memory means either:

(a) the maximum number of tokens in existence at any time is
bounded, or

(b) the maximum capacity of each arc is bounded.

Lemma

A fixed, finite-size Kahn process network can be exe-
cuted in bounded memory under (a) if and only if it
can be executed in bounded memory under (b).

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 12 of 13lec17.fm E. A. Lee

The Growing Bounded Buffer Policy

Definition: a process ininput-blocked if it is blocked trying to
read an input.

Policy: Start with an arbitrary bound K. Execute non-
input-blocked processes as long as they do not cause
the number of tokens on their output arcs to exceedK
(in which case they becomeoutput-blocked). If this
never terminates, we have found a live, bounded-mem-
ory execution. If it terminates, there are two possibili-
ties. First, all processes are input-blocked, so the graph
is not live, and we can stop. If some process is output-
blocked, then we should increaseK and continue.

Theorem [Parks ‘95]:

This policy satisfies the bounded memory criterion and
deadlock requirement.

Specificat ion and Model ing of React ive and Real-Time Systems

© 1996, p. 13 of 13lec17.fm E. A. Lee

Adapting this to Dataflow

Policy:

Start with an arbitrary bound K. Execute enabled
actors that will not cause the number of tokens on
their output arcs to exceedK. If this never terminates,
we have found a live, bounded-memory execution. If it
terminates, there are two possibilities. First, if there
are no enabled actors, the graph is not live, and we can
stop. If there are enabled actors, then we should
increaseK and continue.

