
For a one sided discrete event system where without loss of generality T �

[0;1) de�ne cantor metric

d(s1; s2) =
1

2t

where t is the smallest tag in T such that s1 j
t
6= s2 j

t, or if s1 = s2 then
d(s1; s2) = 0.

An open neighbourhood in this metric space is the set of all the signals which
have the same pre�x. More formally, for a 2 S, r 2 <, 0 < r � 1

N (a; r) = fs : d(a; s) < rg

= fs : sj�= aj�g

where � = log2
�
1

r

�
.

Problem: Let Sd be the set of one sided discrete event signals and the cantor
metric is de�ned. Show that Sd is Huasdor�, i.e., given s; s0 2 Sd, s 6= s0 show
that there exist open sets U1 and U2 such that s 2 U1, s

0

2 U2 and U1 \U2 = �

We can also describe causality in the cantor metric space

� Causality d(F (s); F (s0)) � d(s; s0)

� Strict Causality d(F (s); F (s0)) < d(s; s0)

� Delta Causality 9k < 1; k = 2�� such that d(F (s); F (s0)) � kd(s; s0)
(F is a contraction mapping)

We now investigate whether a causal system placed in feedback con�guration
deterministic. We will show that if the system is strictly causal then the feedback
con�guration is guaranteed to have at most one behaviour, i.e., it can have either
a unique behaviour or no behaviour at all. We will also show that if the system
is delta causal then the feedback con�guration has a unique behaviour and we
can systematically �nd it.

We will �rst show that the cantor metric is indeed a metric. We need to
show that it satis�es the four conditions that any metric must satisfy. For
s; s0; s00 2 Sd,

1. d(s; s0) = d(s0; s) by de�nition

2. d(s; s0) � 0 by de�nition

3. d(s; s0) = 0 i� s = s0 by de�nition

4. Triangle inequality d(s; s0) + d(s0; s00) � d(s; s00)



We will prove a stronger condition than the last condition by showing that
max(d(s; s0); d(s0; s00) � d(s; s00)), i.e., the cantor metric is an ultra metric.

Proof Without loss of generality let d(s; s0) � d(s0; s00). 9 �1�2 such that
sj�1= s0j�1 and s0j�2= s00j�2 . Since d(s; s0) � d(s0; s00), �2 � �1. Hence 9 �3 � �1
such that sj�3= s00j�3 . Hence d(s; s0) � d(s; s00).

Composing Functional Processes

� Parallel Composition The parallel composition of functional (causal,
strictly causal or delta causal) processes is functional (causal, strictly
causal or delta causal).

� Cascade Composition The cascade composition of functional (causal,
strictly causal or delta causal) processes is functional (causal, strictly
causal or delta causal).

� Source Composition The parallel composition of functional (causal,
strictly causal or delta causal) processes and source processes is func-
tional (causal, strictly causal or delta causal) if all the source processes
are determinate (determinate, strictly causal, delta causal).

� Feedback CompositionWe will modify the general feedback con�gura-
tion slightly. We replace the input with equivalent determinate source pro-
cess. We also make all the output only signals as inputs. For f : SN

! SN ,
de�ne the semantics to be a �xed point of f , i.e., s such that f(s) = s.
If no or one signal satis�es this semantic, then the system is determinate
otherwise it is indeterminate.

{ If f is strictly causal, then it has at most one �xed point. Hence the
feedback composition is determinate.

{ (Banach �xed point theorem) If the metric space is complete and f is
delta causal, then it has exactly one �xed point and that �xed point
can be found by starting with any signal tuple s0 and �nding the
limit of s1 = f(s0); s2 = f(s1) : : :

{ If the metric space is compact (for instance if V is �nite and time is
discrete), then f only needs to be strictly causal to apply the Banach
�xed point theorem.

Lemma Let (Sd; d) be some metric space and let the function f : Sd
! Sd be

strictly causal, i.e., d(f(s); f(s0) < d(s; s0)8s; s0 2 Sd. Then if f(s1) = s1 and
f(s2) = s2 then s1 = s2.

Proof Assume s1 6= s2 then d(f(s); f(s0) < d(s; s0)8s; s0 2 Sd implies
d(s; s0) < d(s; s0) which is a contradiction. Hence s1 = s2.

Why do we have to restrict ourself to strict causality? Consider the following
system with a delta causal process f . De�ne an input output process pair such



that output is the same as input. Now this composite process is no longer delta
causal but it is causal nevertheless. Even though f is delta causal but the overall
system is causal and in the given feedback con�guration, it is indeterminate.

Now consider the following example. The process has two inputs s1 and s2
and an output s3. T = [0;1); V = f1; 2; 3 : : :g
foreach e = (�; v) 2 s1, let e

0 = (� + 1; v + 1) 2 s3
foreach e = (�; v) 2 s2, let e

0 = (� + 1=v2; v + 1) 2 s3
if collision, choose s1.
Now consider this process in a feedback con�guration with the output s3 fed
back to s2 and the input at s1 = f(i; 1); i = 0; 1; 2; : : :g. Clearly the system is
a discrete event system and obeys strict causality but in the feedback con�gu-
ration, the behaviour of the system is not discrete event. Hence strict causality
need not preclude absence of behaviour.


