
DSP SEMINAR, 3 MAY 1996

Rapid Prototyping and Deployment of
User-to-User Networked Applications

Wan-Teh Chang

Department of Electrical Engineering
and Computer Sciences

University of California at Berkeley

UNIVERSITY OF CALIFORNIA AT BERKELEY

Acknowledgments

Faculty advisors: Prof. David G. Messerschmitt and
Prof. Edward A. Lee

Collaborators:

• Joe Buck, Stephen Edwards, Alain Girault, Bilung
Lee, and Kennard White

• Weiyi Li and Houman Hashemi

UNIVERSITY OF CALIFORNIA AT BERKELEY

Taxonomy of networked applications

Networked applications:

• User-to-information-server: file transfer, news,
gopher, Web browsing, and video on demand

• User-to-user: telephony, video conferencing, voice
mail, e-mail, shared whiteboard, and shared editor

Implementation architectures:

Server

Client Peer

• Client-server: chat • Peer-to-peer: talk

UNIVERSITY OF CALIFORNIA AT BERKELEY

Motivation

Problem: relatively few user-to-user applications

Objective: proliferation of user-to-user applications

Design: rapid prototyping methodology

Deployment: dynamic network deployment

UNIVERSITY OF CALIFORNIA AT BERKELEY

Design and deployment

Control

Dataflow
Synchronous
reactive

Discrete event

Design environment:
specify, simulate,
verify, synthesize

Application
definition

Network: architectureProgrammable
terminal and protocols

Programmable
terminal

Interaction semantics

Application design using
a mixture of models of
computation

Dynamic network deployment
of application definition to
programmable terminals

UNIVERSITY OF CALIFORNIA AT BERKELEY

Rapid prototyping methodology

Design environment: specification , modeling,
synthesis, and verification

Models of computations:

• Dataflow, discrete event, synchronous/reactive, finite
state machine

Module

Module

Module

Interacting modules

Written in a
general purpose
programming
language

UNIVERSITY OF CALIFORNIA AT BERKELEY

Framework

Ptolemy’s heterogeneous approach: mixing domain-
specific models of computation

I/O & user
interface

Numeric
computation

Control
flow

Sequencing of operations
- Handling GUI events
- Networking protocols

Focus on:
1. Good formal model for

specifying control flow
- state/event based

2. Combine control with
rest of system

Partitioning of functionality

Objects

Dataflow

UNIVERSITY OF CALIFORNIA AT BERKELEY

Finite state machine (FSM)

Advantages: intuitive, formal mathematical theory

Weaknesses: flat, sequential

a

b

p

q

a/p!a/q

ab/q

a/p

S0

S1 S2

UNIVERSITY OF CALIFORNIA AT BERKELEY

Organizing complex state space

Solution: add hierarchy and concurrency to basic FSM

• Statechart, Argos, Esterel

a
b/c c

a

S

T

T0

T1

T2

T3

V0

V1

W0

W1

U

d

V W

Event broadcast

Hierarchical state

Concurrent substates

Statechart

UNIVERSITY OF CALIFORNIA AT BERKELEY

Statechart example

R

A

(in SeenA & in SeenB) / O

SeenA

A & !B

R

B/O A/O

R

R
B & !A

A & B/O

Statechart

Emit O whenever both A and B
have occurred. Reset whenever
R occurs.

Basic FSM

Natural language specification:

B

SeenB

UNIVERSITY OF CALIFORNIA AT BERKELEY

Mixing control with dataflow

Embed dataflow graphs in states:

• Switching between modes of operation

Dataflow graphs are
encapsulated within states

Control in Control out

Data in Data out

Specification

UNIVERSITY OF CALIFORNIA AT BERKELEY

Nesting FSM and concurrency models

• Concurrency and hierarchical FSM are orthogonal
semantic properties

• Hierarchical nesting of FSM and concurrency models
(dataflow, synchronous/reactive) subsumes variants
of Statecharts: *charts

Event
broadcast Point-to-point

UNIVERSITY OF CALIFORNIA AT BERKELEY

Implementation of hierarchical FSM

Select is the key primitive

• A block is replaced by one of a set of internal
systems.

• The choice of internal system is controlled
dynamically by a FSM.

Internal
systems

Control
(FSM)

Internal events

Data in Data out

Control outControl in

Implementation

Select

UNIVERSITY OF CALIFORNIA AT BERKELEY

Summary of rapid prototyping methodology

• *charts good for specifying complex control and
combining control and dataflow

• Semantics defined

• Implementation in Ptolemy: simulation; code
generation

I/O & user
interface

Numeric
computation

Control
flowObjects

UNIVERSITY OF CALIFORNIA AT BERKELEY

Rapid deployment: motivation

Two obstacles to rapid deployment of new networked
applications:

• Architectural constraints: application functionality
implemented by the network

• Standardization at application level

Major economic barrier to deployment of user-to-user
applications:

• Network externality problem: early users derive little
benefit from the applications

UNIVERSITY OF CALIFORNIA AT BERKELEY

Solution

Applications defined in user terminals , and
increasingly in software .

Network deployment: software-defined applications
can be distributed via the network.

• Web browsers, document viewers, audio players

• Manual file transfer and installation

• Have to anticipate the need

Dynamic network deployment: transfer application
definition at session establishment (and during the
session).

UNIVERSITY OF CALIFORNIA AT BERKELEY

The dynamic network deployment approach

• Platform

• Application definition language

• Protocol for transfer of application definitions

Repository of
applications

Application
design
environment

Transfer of
application definitions

ApplicationApplication

Programmable
terminal

Programmable
terminal

Platform Platform
Computer
with O.S.
and resources

UNIVERSITY OF CALIFORNIA AT BERKELEY

Discussion

Limit standardization to infrastructure elements

Downloadable software definition of remainder of
application functionality

Bypass network externality problem: a community of
interest consisting of all networked platforms

Similar ideas:

• Postscript, Telescript agents, Java applets, MSDL

• File servers on LANs

UNIVERSITY OF CALIFORNIA AT BERKELEY

Issues

Security:

• Application definition language must be a high-level
language with restricted functionality

• Authentication of trusted sources

Hardware/O.S. independence ==> high-level language

Performance:

• Session establishment time: download time,
interpretation/compilation

• Run-time: interpretation overhead

Pricing and charging; licensing; learning to use

UNIVERSITY OF CALIFORNIA AT BERKELEY

Prototype based on Java and WWW

• Application definition language: Java

• Platform: Netscape + helper program

• Session establishment procedure

Java applets

NetscapeNetscape

Helper program

Originating user Responding user

UNIVERSITY OF CALIFORNIA AT BERKELEY

Originating user places a call

UNIVERSITY OF CALIFORNIA AT BERKELEY

Alerting the responding user

UNIVERSITY OF CALIFORNIA AT BERKELEY

JavaTalk

14.6 KB, uses
a widget
library of
18.2KB

UNIVERSITY OF CALIFORNIA AT BERKELEY

Chalkboard

10.8KB

UNIVERSITY OF CALIFORNIA AT BERKELEY

Whiteboard (being developed)

>35KB

UNIVERSITY OF CALIFORNIA AT BERKELEY

Conclusions

Rapid prototyping: heterogeneous approach

• Systems consisting of DSP, control, GUI, etc.

• Combining domain-specific design styles

Dynamic network deployment

• Avoid standardization of actual application

• Limit network externality problems

• Security and high-speed networking are key

• Java-enabled Web browser as integrated environment
for user-to-server and user-to-user applications

• Encourage a proliferation of innovative user-to-user
applications

UNIVERSITY OF CALIFORNIA AT BERKELEY

Future directions

Service configuration: terminal-network signaling

• Heterogeneity in networks, terminals, and
applications

• Negotiation of processing and quality of service

• Adapting to changing conditions at run time

• Application of transportable computation (mobile
programs)

Design environment:

• Design of flexible , adaptive applications

