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Taxonomy of networked applications

Networked applications:

• User-to-information-server:  file transfer, news,
gopher, Web browsing, and video on demand

• User-to-user:  telephony, video conferencing, voice
mail, e-mail, shared whiteboard, and shared editor

Implementation architectures:

Server

Client Peer

• Client-server:  chat • Peer-to-peer:  talk
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Motivation

Problem: relatively few user-to-user applications

Objective:  proliferation of user-to-user applications

Design:  rapid prototyping methodology

Deployment: dynamic network deployment
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Design and deployment

Control

Dataflow
Synchronous
reactive

Discrete event

Design environment:
specify, simulate,
verify, synthesize

Application
definition

Network: architectureProgrammable
terminal and protocols

Programmable
terminal

Interaction semantics

Application design using
a mixture of models of
computation

Dynamic network deployment
of application definition to
programmable terminals
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Rapid prototyping methodology

Design environment:  specification , modeling,
synthesis, and verification

Models of computations:

•  Dataflow, discrete event, synchronous/reactive, finite
state machine

Module

Module

Module

Interacting modules

Written in a
general purpose
programming
language
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Framework

Ptolemy’s heterogeneous approach: mixing domain-
specific  models of computation

I/O & user
interface

Numeric
computation

Control
flow

Sequencing of operations
- Handling GUI events
- Networking protocols

Focus on:
1. Good formal model for

specifying control flow
- state/event based

2. Combine control with
rest of system

Partitioning of functionality

Objects

Dataflow
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Finite state machine (FSM)

Advantages: intuitive, formal mathematical theory

Weaknesses:  flat, sequential
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Organizing complex state space

Solution:  add hierarchy  and concurrency  to basic FSM

•  Statechart, Argos, Esterel

a
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Event broadcast

Hierarchical state

Concurrent substates

Statechart
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Statechart example

R

A

(in SeenA & in SeenB) / O

SeenA

A & !B

R

B/O A/O

R

R
B & !A

A & B/O

Statechart

Emit O whenever both A and B
have occurred. Reset whenever
R occurs.

Basic FSM

Natural language specification:

B

SeenB
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Mixing control with dataflow

Embed dataflow graphs in states:

•  Switching between modes of operation

Dataflow graphs are
encapsulated within states

Control in Control out

Data in Data out

Specification



UNIVERSITY OF CALIFORNIA AT BERKELEY

Nesting FSM and concurrency models

• Concurrency  and hierarchical FSM  are orthogonal
semantic properties

•  Hierarchical nesting of FSM and concurrency models
(dataflow, synchronous/reactive) subsumes variants
of Statecharts: *charts

Event
broadcast Point-to-point
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Implementation of hierarchical FSM

Select  is the key primitive

•  A block is replaced by one of a set of internal
systems.

•  The choice of internal system is controlled
dynamically by a FSM.

Internal
systems

Control
(FSM)

Internal events

Data in Data out

Control outControl in

Implementation

Select
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Summary of rapid prototyping methodology

• *charts good for specifying complex control and
combining control and dataflow

•  Semantics defined

• Implementation in Ptolemy:  simulation; code
generation

I/O & user
interface

Numeric
computation

Control
flowObjects
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Rapid deployment: motivation

Two obstacles to rapid deployment of new networked
applications:

• Architectural constraints:  application functionality
implemented by the network

• Standardization  at application level

Major economic barrier to deployment of user-to-user
applications:

• Network externality problem:  early users derive little
benefit from the applications



UNIVERSITY OF CALIFORNIA AT BERKELEY

Solution

Applications defined in user terminals , and
increasingly in software .

Network deployment:  software-defined applications
can be distributed via the network.

•  Web browsers, document viewers, audio players

•  Manual file transfer and installation

•  Have to anticipate the need

Dynamic network deployment:  transfer application
definition at session establishment  (and during the
session ).
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The dynamic network deployment approach

•  Platform

•  Application definition language

•  Protocol for transfer of application definitions

Repository of
applications

Application
design
environment

Transfer of
application definitions

ApplicationApplication

Programmable
terminal

Programmable
terminal

Platform Platform
Computer
with O.S.
and resources
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Discussion

Limit standardization to infrastructure  elements

Downloadable software definition of remainder of
application functionality

Bypass network externality problem: a community of
interest consisting of all networked platforms

Similar ideas:

•  Postscript, Telescript agents, Java applets, MSDL

•  File servers on LANs
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Issues

Security:

•  Application definition language must be a high-level
language  with restricted functionality

•  Authentication of trusted sources

Hardware/O.S. independence ==> high-level language

Performance:

• Session establishment time:  download time,
interpretation/compilation

• Run-time:  interpretation overhead

Pricing and charging; licensing; learning to use
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Prototype based on Java and WWW

•  Application definition language: Java

•  Platform: Netscape + helper program

•  Session establishment procedure

Java applets

NetscapeNetscape

Helper program

Originating user Responding user
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Originating user places a call



UNIVERSITY OF CALIFORNIA AT BERKELEY

Alerting the responding user
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JavaTalk

14.6 KB, uses
a widget
library of
18.2KB
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Chalkboard

10.8KB
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Whiteboard (being developed)

>35KB
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Conclusions

Rapid prototyping:  heterogeneous approach

•  Systems consisting of DSP, control, GUI, etc.

•  Combining domain-specific  design styles

Dynamic network deployment

•  Avoid standardization  of actual application

•  Limit network externality  problems

• Security  and high-speed networking  are key

•  Java-enabled Web browser as integrated environment
for user-to-server  and user-to-user  applications

•  Encourage a proliferation of innovative user-to-user
applications
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Future directions

Service configuration: terminal-network signaling

• Heterogeneity  in networks, terminals, and
applications

• Negotiation  of processing and quality of service

• Adapting  to changing conditions at run time

•  Application of transportable computation  (mobile
programs)

Design environment:

•  Design of flexible , adaptive  applications


