The hardware software co-design problem is posed as an evolution of existing synthesis Methods.
Vulcan

1. Specification
2. Modeling
3. Constraint Analysis
4. Software and Runtime Environment
5. Target Architecture - H/S Interface
6. Partitioning
7. Co-simulation

Model -- Flow Graph

- Hierarchical control/data-flow graph
 - control flow primitives (iteration and model call)
 - modeled through hierarchy
- Acyclic
 - models partial order of tasks/operations
 - iteration is modeled outside the graph
- Polar
 - source and sink vertices model No-Operations

Margarida Jacome - UT Austin - Spring 98
Flow Graph (CDFG)

- **Conjoined output**: directs the flow of control to all its branches.
- **Disjoined output**: selects one of the successors based on a condition index.

Operation vertices in a Flow Graph

1. **no-op**: no operation
2. **cond**: conditional fork
3. **join**: conditional join
4. **op-logic**: logical operations
5. **op-arithmetic**: arithmetic operations
6. **op-relational**: relational operations
7. **op-io**: I/O operations
8. **wait**: wait on a signal variable
9. **link**: hierarchical operations
 - **call**: procedure call (invocation times = 1)
 - **loop**: iteration (invocation times ≥ 1)

Margarida Jacome - UT Austin - Spring 98
System Model

Consists of one or more flow graphs that may be hierarchically linked to other flow graphs

System Model: \(\Phi = \{G_1^*, G_2^*, ..., G_n^*\} \)

where

\[G_i^* \text{ represents the process graph model } G_i \text{ and all the flow graphs that are hierarchically linked to } G_i. \]

A flow graph model that is common to two hierarchies of a system model is called a *shared model*.

Flow Graphs: Execution Semantics

1. At any time, an operation may be
 - waiting for execution
 - presently executing
 - having completed its execution

 The state of a vertex is defined as being one of \(\{s_r, s_e, s_d\} \)

\[s_r: \text{ reset state} \rightarrow \text{waiting for execution} \]

\[s_e: \text{ enable state} \rightarrow \text{presently executing} \]

\[s_d: \text{ done state} \rightarrow \text{completed execution} \]
Example

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- ➡️ reset
- ➡️ enable
- ➡️ done

No assumption about timing of the operations is made ➞
(consecutive rows can be spaced arbitrarily over the time axis)

Timing Properties

1. Operation delay
2. Graph Latency
3. Rate of Execution (operations)
4. Rate of Reaction (graphs)
Operation Delay

\[\delta(v_f) = 1 \]

Latency

Latency, \(\lambda(G) \), of a graph model \(G \) refers to the execution delay of \(G \)

\[\lambda_k(G) = t_k(v_n) - t_k(v_0) \]

- the latency of a non-hierarchical flow graph may be variable due to the presence of conditional paths
Execution Delay of Link Vertices

Given by

- latency of the corresponding graph model times the number of times the called graph is invoked
- execution delay of a link vertex can be
 - variable
 - unbounded (loop vertices with unbounded indices)

Link vertices: call and/or loop (point to other flow graphs in the hierarchy)

Timing Properties

1. Operation delay
2. Graph Latency
3. Rate of Execution (operations)
4. Rate of Reaction (graphs)
Rate of Execution (operations)

1. Assuming a synchronous execution model with cycle time τ, the rate of execution at invocation k of operation v_i is given by the time interval between its current and previous execution

$$\rho_i(k) := \frac{1}{t_k(v_i) - t_{k-1}(v_i)} \quad \text{(sec$^{-1}$)}$$

$$= \frac{\tau}{t_k(v_i) - t_{k-1}(v_i)} \quad \text{(cycle$^{-1}$)}$$

Rate of Reaction (Graphs)

1. For a graph model, G, its rate of reaction is defined as the rate of execution of its source operation

$$\rho_G(k) := \rho_0(k)$$

The reaction rate is used to capture the effect on the run-time system of the type of implementation chosen for the graph model.

- e.g., the choice of a non-pipelined implementation leads to

$$\rho_G(k) - \rho_G(k-1) = \lambda_k(G) + \gamma_k(G)$$

where $\gamma_k(G)$ represents the overhead delay (delay of reinvocation of G).
Timing Properties

1. Operation delay
2. Graph Latency
3. Rate of Execution (operations)
4. Rate of Reaction (graphs)

Fixed, variable, bounded/unbounded

Non-Determinism

1. The delay of an operation may be variable, depending on:
 - The value of input data: e.g., loops with data dependent iteration counts, call vertices with conditionals
 - The timing of input data: e.g., wait operation
2. The latency of a graph may be variable
Data Dependent Delays

- **1**: Data-dependent loop and synchronization operations introduce uncertainty over
 - the precise execution delay of the model
 - the order of execution of the operations in the model

Operations with **variable delays** are termed **non-deterministic delay** or **ND** operations.

Non-determinism and Execution Rate

- **1**: Data-dependent loop and synchronization operations introduce uncertainty over
 - the precise execution delay of the model
 - the order of execution of the operations in the model

Operations with **variable delays** are termed **non-deterministic delay** or **ND** operations.
A Single Rate Model

On each execution of the flow graph, each operation executes once.

In this case, the reaction rate of the graph G is:

$$\rho_G(k) := \rho_0(k) = \rho_{vi}(k),$$

for all $vi \in V(G)$ and for all $k \geq 0$.

The execution of G proceeds at **single rate**.

A Multi Rate Model

Page 11
Timing Constraints and Constraint Analysis

1 Timing Constraints
2 Scheduling
3 Constraint Satisfiability

Timing Constraints

1 Operation delay constraints
 - *unary*: bounds on the delay of an operation
 - *binary*: bounds on the delay between the starting time of two operations

1 Execution rate constraints
Binary Delay Constraints

Minimum timing constraint, \(l_{ij} \geq 0 \) from operation vertex \(v_i \) to \(v_j \) is defined as

\[
t_k(v_j) \geq t_k(v_i) + l_{ij}
\]

by default, any sequencing dependency between two operations induces a minimum timing constraint

Maximum timing constraint, \(u_{ij} \geq 0 \) from operation vertex \(v_i \) to \(v_j \) is defined as

\[
t_k(v_j) \leq t_k(v_i) + u_{ij}
\]

Example

```
MAX DELAY 3

MIN DELAY 4
```

```
1  NOP
2  1
3  2
4  3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```

```
0 + 1
2 + 3
```
Operation Delay Constraints

Can capture durational and deadline constraints in specifying real time systems.

- **a before b**: $a \delta_a b$
- **a meets b**: $a \ldots b$
- **a overlaps b**: $a \ldots b$
- **a finishes by b**: $a \delta_a b$
- **a during b**: $a \delta_a 0$
- **a after b**: $a \delta_b b$

etc...

Timing Constraints

1. **Operation delay constraints**
 - refer to constraints on the interval of time between successive executions of an operation

2. **Execution rate constraints**
 - rate constraints on input (output) operations refer to the rates at which the data is required to be produced (consumed)
Data Rate Constraints

1 **Minimum data rate constraint**, \(r_i \) (cycles\(^{-1}\)), on an input/output operation \(v_i \) defines a lower bound on the execution rate of the operation

\[
\rho_{v_i}(k) \geq r_i \quad \forall k > 0 \quad [\text{min rate}]
\]

\(\implies t_{k}(v_i) - t_{k-1}(v_i) \leq \tau \cdot r_i^{-1} \quad \forall k > 0 \)

1 **Maximum data rate constraint**, \(R_i \) (cycles\(^{-1}\)), on an I/O operation \(v_i \) defines an upper bound on the execution rate of the operation

\[
\rho_{v_i}(k) \leq R_i \quad \forall k > 0 \quad [\text{max rate}]
\]

\(\implies t_{k}(v_i) - t_{k-1}(v_i) \geq \tau \cdot R_i^{-1} \quad \forall k > 0 \)

Ex.: Specification of Data Rate Constraints

```plaintext
process example (a,b,c)
    in port a[8], b[8];
    out port c[8];
    {
        boolean x[8], y[8], z[8], w[8];
        tag A;
        x = read(a);
        y = read(b);
        z = x * y;
        w = x + y;
        while(z >= 0) {
            while(w >= 0) {
                write c = y;
                w = w - 1;
            }
            z = z - w;
            write c = z;
        }
    }
```

A:
- attribute "constraint minrate of A = 100 cycles/sample"
- attribute "constraint minrate 0 of A = 1 cycles/sample"
- attribute "constraint minrate 1 of A = 10 cycles/sample"

Note: The image contains a diagram illustrating the relative min constraints indexed by the corresponding loops. The diagram shows a graph with nodes labeled \(A \) and \(G \), and an edge \(v_i \) connecting them. The relative min rate constraint is indicated as 0.01 per cycle.
Timing Constraints

Scheduling

Constraint Satisfiability

For each invocation of a flow graph model, an operation is invoked zero, one, or many times depending upon its position on the hierarchy of the flow model.

The execution times $t_k(v)$ of an operation v are determined by two separate mechanisms:

- The runtime scheduler, γ determines the invocation time of flow graphs.
- The operation scheduler, Ω.

Diagram: Flow graph with nodes G, G_1, v_1, v_2, and edge x.
Timing Constraints and Scheduling

Given a scheduling function, a timing constraint is considered satisfied if

- the operation starting times determined by the scheduling function satisfy the inequalities

\[
\begin{align*}
 t_k(v_j) &\geq t_k(v_i) + l_{ij} & \text{[min delay]} \\
t_k(v_j) &\leq t_k(v_i) + u_{ij} & \text{[max delay]} \\
\rho_{cv}(k) &\leq R_i & \text{[max rate]} \\
\rho_{cv}(k) &\geq r_i & \text{[min rate]}
\end{align*}
\]

Relative Scheduler

For a given vertex \(v_i \), a set \(A(v_i) \) of anchor vertices is defined as the set of conditional (CD) and loop, wait (ND) vertices that have a path to \(v_i \).

\[
A(v_i) = \{ v_j \in V : v_j \succ v_i, \ v_j \text{ is ND or CD} \}
\]

A relative schedule function \(\Omega_i \) is defined as a set of offsets for each operation such that the operation start time satisfies

\[
t_k(v_j) \geq \max_{a \in A(v_i)} \left[t_k(a) + \delta(a) + \theta_a(v_i) \right]
\]
Constraint Graph

Anchors??

Modified Relative Schedule

<table>
<thead>
<tr>
<th>Vertex</th>
<th>v_1</th>
<th>v_3</th>
<th>v_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_4</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>v_5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>v_6</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>v_7</td>
<td>(2,4)</td>
<td>(1,3)</td>
<td></td>
</tr>
<tr>
<td>v_8</td>
<td>(2,4)</td>
<td>(1,3)</td>
<td></td>
</tr>
<tr>
<td>v_9</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>v_{10}</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>v_{11}</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>v_{12}</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>v_{13}</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
</tbody>
</table>
Modified Relative Schedule

Constraint Satisfiability

For constraint analysis purposes, it is not necessary to determine a schedule of the operations, but only to verify the existence of a schedule identifying conditions under which no solution (i.e., schedule) exists.
ND operations

In the presence of *ND* operations

- satisfiability analysis attempts to determine the existence of a schedule of operations for all possible (and conceivable) values of the delay of the *ND* operations

Modified relative scheduling - Min/Max Delay Constraints

- A minimum delay constraint is always satisfiable

 \[t_k(v_i) \geq \max_{a \in A_a(v_i)} [t_a + \delta(a) + |q_a(v_i)| \infty] \]

 For each constraint \(lij \) solution can be constructed such that

 \[\theta_{ij}(v_i) \geq \max (l(i(v_i)v_j), l_{ij}) \]

- A maximum delay constraint may not always be satisfiable

Satisfiability - Delay Constraints

Feasibility:

- A constraint graph is considered *feasible* if it contains no positive cycle when the delay of the ND operations is assigned to zero.

Condition necessary and sufficient to determine the satisfiability of constraints in the presence of ND operations:

- Operation delay constraints are *satisfiable* if and only if

 the constraint graph is *feasible*

 there exists no cycles with ND operations
Examples

Constraints are not satisfiable (maybe feasible)

Can be modified such that...

Constraints are satisfiable

Max Rate Constraints

A max-rate constraint, R_i, in G is satisfied if

$$l_m(G) \geq R_i^{-1}$$

As with minimum delay constraints, maximum rate constraints are always satisfiable when the lower bound $l_m(G) \leq R_i^{-1}$, the max-rate constraint can still be satisfied by an appropriate choice of overhead delay that is applicable to every execution of G.
Min Rate Constraint

A minimum rate constraint \(r_i \) on an operation \(v_i \in V(G) \), where \(G \) contains no ND operations is satisfiable if

\[
\overline{\gamma}(G) + l_M(G) \leq \left(\frac{t}{r_i} \right)
\]

1. A minimum rate constraint places an upper bound on the interval of successive executions of an operation.

Min Rate Constraints

General case: involves two bounds

\[
\overline{\gamma}(G) + \overline{\lambda}(G) \leq \left(\frac{t}{r_i} \right)
\]
Min Rate Constraints

General case: involves two bounds

\[\tilde{\gamma}(G) + \tilde{\lambda}(G) \leq (\tau/r_i) \]

Upper Bound on Overhead Delay

\[\tilde{\gamma}(G) := [I_m(G^+) + \gamma(G^+)] - I_m(G) \]
Min Rate: satisfiability

Max delay (min rate) between two executions of v_i occurs when the entire hierarchy is traversed with just one execution of the link operations that lead to v_i.

Min Rate Constraints

General case: involves two bounds

$$\bar{\lambda}(G) + \lambda(G) \leq \left(\frac{t}{r_i} \right)$$
Min Rate Constraints (with ND operations)

In the presence of ND operations in G:

- The latency $\lambda(G)$ needs to be bounded
- Relative rate constraints -- represented as a backward edge (i.e., max delay constraint) from G’s sink to source vertices => ND cycle in the constraint graph

ND Operations: Data-dependent Loops

- The loop index determines the number of times the loop body is invoked for each invocation of the loop link operation => delay of the loop operation is its loop index times the latency of the loop body
- If the constrained graph (G) contains at most one loop operation, v, on a path from source to sink
- The minimum rate constraint can be seen as a bound on the number of times the loop body (G) is invoked.

The minimum rate constraint can be seen as a bound on the number of times the loop body (G) is invoked.
Satisfiability of Min Rate Constraints

Consider a flow graph G with an ND operation v representing a loop in the flow graph.

A minimum rate constraint r_i on operation $v_i \in V(G)$ and $v_i \neq v$ is satisfiable if the loop index, x_v indicating the number of times G_v is invoked for each execution of v is less than the bound $G(G) - 1 + \mu(v)$.

$$x_v := \left\lceil \frac{\tau \cdot r_i^{-1} - \gamma(G) - 1}{l_M(G_v)} + 1 \right\rceil$$

$\mu(v)$ represents the mobility of operation v, defined as the difference between the longest path that goes through v and $l_M(G_v)$.

Relative Min Rate Constraints

Relative min rate constraint relative to G is applied when G is enabled and executing.

$$\overline{x_v} := \left\lceil \frac{\tau \cdot r_i^{-1} - \gamma(G) - 1}{l_M(G_v)} + 1 \right\rceil$$
1. Construct the Constraint Graph
 - add forward edges for *minimum delay* and *maximum rate* constraints
 - add backward edges for *maximum delay* and (relative) *minimum rate* constraints

2. Identify *cycles* by path enumeration for each of the *backward edges* in the constraint graph
 - check for constraint satisfiability, bound delays, etc.

3. Propagate *minimum rate* constraints up the graph hierarchy