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Abstract

This paper examines the Time Triggered Protocol (TTP), for the support of distributed real-time systems
which has recently emerged from research into the commercial world, and TTP/C, a variant of TTP for
safety-critical systems that is coming into use in the automotive industry.  The culmination of more than
20 years of effort, TTP has been the focus of more than 100 masters level theses and 25 doctoral
dissertations. [1] In the sections that follow, we begin by discussing several requirements of embedded
safety critical systems. Next we will describe the TTP/C and many of its key features and compare these
features to those of the Controller Area Network (CAN) protocol, which is currently used in automotive
systems. This comparison will illustrate why TTP/C, the first instantiation of a TTP primarily for use in
automotive systems, is the first protocol to qualify as a SAE (Society of Automotive Engineers) Class C
protocol. [2] Finally, we will examine the current state of simulation and modeling of TTP based
systems. As part of this examination the authors will outline a proposed approach to high-level modeling
of TTP systems.

Introduction

The trend to replace expensive, inefficient mechanical systems with more cost effective, highly featured
electronic systems has been increasing in the automotive sector since the first replacement of electro-
mechanical engine management more than 20 years ago.  However, the use of all-electronic systems in
safety-critical applications such as braking or steering requires new technologies and more sophisticated
engineering practices.

TTP/C is a protocol based on the TTP (Time-Triggered Protocol) and implemented so that it meets the
SAE requirements for a class C automotive protocol. Class C protocols are suitable for high-speed,
single-failure operational safety-critical applications. The protocols currently used by automotive
engineers, such as the J1850 family and CAN, are suitable only for Class A and Class B systems, which
are subject to less rigorous requirements. TTP/C is the first protocol to meet the additional safety critical
requirements of Class C. The first class of applications in development using TTP/C are the ‘X-by-wire’
applications, such as brake-by-wire, in which all-hydraulic and mechanical systems are replaced by
electronics. [3]

The MARS Project and Its Follow-ons

The origins of the Time-Triggered Protocol (TTP), and its derivative TTP/C for use in safety critical
systems, are found in the European Commission funded MARS (Maintainable Real-time System)
Project, which began in 1979.  The motivation for the project was the insight that within 20 years it
would become possible to implement a node of a distributed real-time system in a single chip, and that
this chip would be inexpensive.  The original MARS architecture includes node clusters, fault-tolerant
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units, nodes, tasks, and a fault-tolerant global time base, all of which is consistent with present-day TTP.
In addition, the notion of using fail-silent behavior mechanisms when faults are detected has been a key
concept from the beginning of MARS.  The researcher who has led the development effort on TTP and
TTP/C is Dr. Hermann Kopetz of the Technical University of Vienna.  [4]

In 1989, the follow-on project Predictably Dependable Computer Systems (PDCS) was initiated under
the European Esprit Program.  PDCS involved creating a prototype of PDCS and then testing this
through fault-injection experiments conducted at three European universities. (HC2)  More recently still,
a third project called “Safety Related Fault Tolerant Systems in Vehicles” (referred to as the “X-by-
Wire” Project for short) was funded under the EC program Brite-EuRam III.  The X-by-Wire Project has
specifically explored the application of  TTP/C-based systems in the automotive sector.  Participants are
Daimler-Benz Research, Fiat Research Center, Ford Europe, Volvo, Bosch, Magneti Marelli, Mecel, the
University of Chalmers, and the Vienna University of Technology. [5]

Embedded Safety-Critical Systems and TTP/C

 The Time-Triggered Domain versus the Event Triggered Domain: The two most common
domains employed in the development of transportation systems are event triggered and time triggered.
Until TTP/C, time-triggered domain engineering has been primarily used in the aerospace industry,
where propulsion and navigation systems must be highly reliable and fault tolerant. However, aerospace
systems such as those based on the ARINC standards are too complex and costly for use in automobiles.
Event-triggered methods been the primary tool of engineers in automotive control electronics.

At the highest level, event-triggered systems advance in response to a sequence of events. Because the
occurrence of these events is not time determinant, the system’s behavior is not predictable in time. In
fact, functional predictability is also lessened, as event-triggered systems are not temporally
composable.  By contrast, a time-triggered system is driven by a globally synchronized clock. Thus the
behavior of the nodes can be specified in time as well as by functionality.

Classes of Safety-Critical Protocols:  The SAE multiplex specifications define three classes of
multiplex protocols. Class A protocols have the lowest requirements both in terms of performance and
features. They are primarily intended for use in automotive body electronic applications where the
performance and feature requirements are the lowest. Cost is the driving factor in Class A applications.
Class B is suitable for high-speed applications such as engine management, which demand up to 1
megabit/sec. However, determinism and other safety related requirements are still not imposed. Class C
is the most demanding protocol family, and includes several key safety-related features, such as
protection against babbling idiots, deterministic behavior in all cases, low and bounded latency, and
distributed clock synchronization.[6,7] These concepts will be described in more detail in the discussion
of TTP characteristics and comparison to CAN below.

A principal reason that TTP/C is the first protocol to qualify as Class C, is that the previous protocols are
all event triggered. Event-triggered systems are susceptible to several serious failure modes. For
example, CAN uses a bit-wise priority arbitration scheme to control bus access. So if a node begins to
send a high-priority message repeatedly, all lower priority messages are blocked from transmission. This
is known as a “babbling idiot” failure, and must be guarded against to qualify for use in a safety critical
system. Additionally, as the load on the bus increases, the worst case transmission time of messages is
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not predictable, and the worst case may not be bounded. As control systems ultimately have temporal
deadlines, message delivery must be bounded and held within its deadline to ensure continued correct
operation. For safety-critical systems even this is not enough; the variance in delivery time, jitter, must
be small and known to allow completely time determinant operation in all modes. . There are several
good references for a complete discussion of these issues, including [8] and [9].

Key Characteristics of TTP/C with Comparison to CAN

TTP/C is a type of TDMA (Time Division Multiple Access) protocol, in which periodic time slots are
assigned to individual processing nodes in a system at design time.  Thus, for instance, in an automotive
system, the braking, steering, suspension, and power-train subsystems may all have their own TTP/C
nodes, each of which is replicated in a Fault-Tolerant Unit (FTU) to improve reliability.  Each of the
four subsystems is assigned its own time slot, which it uses to periodically broadcast state messages that
enjoy guaranteed transmission time. [10]  Eight key characteristics of TTP/C, and a comparison of each
to CAN, are presented in the following section.

Node Architecture:
TTP/C:  System nodes in a TTP/C system consist of a Host, a Controller Network Interface (CNI), and
a TTP/C communications controller.  The Host runs the application software for the relevant system
function (for instance, the control software for the braking system in an automobile).  The CNI stands
between the Host and the TTP/C controller, effectively de-coupling the applications-level software from
the network.  Within the CNI is a Message Descriptor List, which contains information controlling bus
access, and a data sharing interface which is typically implemented with dual port RAM (allowing the
Host and the TTP/C controller to access the shared memory independently).  The TTP/C
communications controller provides the actual connection between the TTP/C node and the shared
network.  The controller supports the protocol with several essential services:  “…the TTP/C controller
provides guaranteed transmission times with minimal latency, jitter, fault-tolerant clock synchronization,
and fast error detection.” [10]
CAN:  There is no fixed architecture for the CAN nodes or the corresponding interface to the host node,
only the specification of the protocol itself. So each suppliers’ CAN product has a different interface and
feature set in terms of buffering, interrupts, etc. [11, 12]

Scheduling:
TTP/C:  Due to the TDMA roots of TTP/C, system scheduling is static:  the determination of when a
node can place a message on the system bus is made at design time.  The points in time when the various
nodes in a system are authorized to transmit form the lattice points of a TTP/C “action lattice.”  The time
difference between two adjacent points in the action lattice represent the “basic cycle time” of the
system, and set a lower bound on the response time of the system.  At run time, the OS in a TTP/C
system uses table lookups from a table created at compile time to determine which tasks must be
executed.  [7]
CAN:  CAN messages are scheduled dynamically. Each message is assigned a priority and the bus is
given to the highest priority message requesting it at the time. This arbitration scheme means that CAN
is exposed to system failure in the presence of a babbling idiot. Additionally, as the bus becomes
increasingly busy, the latency and jitter associated with message delivery also increase, and the system
becomes more and more difficult to predict. [11, 12]
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Use of State Messages:
TTP/C:  Under TTP/C, nodes generate a state message in each TDMA round (of course, when some
event has occurred in the intervening time since the last message, the state message will change).  State
messages are posted to the CNI (Controller Network Interface) by the TTP/C Host for transmission over
the system network.  Messages are not queued; they are broadcast in each round, and then written over
with the next message. [10]
CAN:  In CAN, as with most event-driven systems, messages generated by system nodes reflect the
occurrence of events in the domain of control.  These events must all be queued and processed in order.
[11, 12]

Clock Synchronization:
TTP/C:  The access of the communication controllers in TTP/C system nodes to the bus, as noted, is
regulated via the a priori allocation of time slots.  A commonly maintained keeper of global time is thus
critical to the proper operation of the protocol.  The TTP/C controller as currently implemented in an IC
provides a synchronized clock with a tick duration of 1 microsecond.  Within a cluster of TTP/C nodes,
all nodes are aware of which node has access to the bus during a specified time slot, given the a priori
scheduling allocation.  By noting the time when messages are received from other nodes (TTP/C is a
broadcast protocol, so all nodes hear all messages) with the known schedule, a node can calculate the
difference between the clock of the sending node and its own clock. [13]
CAN:  CAN provides no notion of global clock synchronization. [11, 12]

Implicit Flow Control:
TTP/C:  Flow control under TTP/C is implicit:  that is to say, nodes receiving messages do not respond
with a receipt acknowledgement, as they would under an explicit flow control regime.  As nodes and
intelligent sensors in a TTP/C system can only broadcast a message at fixed intervals, or lattice points,
they may have to hold information on a development in a controlled object until the next transmit
opportunity.  For some kinds of events, such as the pushing of a button by an operator, the sensor must
be capable of guaranteeing that the state of the button being pushed endures, or is at least preserved,
until the next lattice point.  In some cases, “… some short lived less important intermediate states of the
RT-entities will not be reflected in the observations and will be lost.  Yet, even in a peak load situation,
the number of messages per unit time, i.e. the message rate, remains constant.” [13]
CAN:  CAN relies on explicit flow control and message addressing. [11, 12]

Composability:
TTP/C:  TTP/C supports a robust level of “composability” – the capability to carry a thoroughly tested
subsystem into a larger system, and to be able to depend on the subsystem retaining the same
characteristics that it demonstrated in isolation.  Composability is good under TTP/C because of the
strict segregation of subsystems in the time domain, with each subsystem node being allocated its own
time slot.  In the auto industry, this feature potentially allows the rapid integration of components
provided by multiple suppliers into a larger framework, without the need to perform extensive system
integration tuning and testing.  [14])
CAN:  CAN systems are functionally composible. They are also somewhat temporally composible as
discussed by Tindell: “A generally perceived problem with CAN is that it is unable to guarantee the
timing performance of lower priority messages. Recent work has developed analysis to bound message
latencies under arbitrary error rate assumptions.” [15] However, there is no protection against babbling
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idiots, nor is a CAN controller guaranteed to be fail silent (see below). This prohibits CAN from
qualifying as a true Class C protocol, and precludes it from use in safety-critical systems.

Membership:
TTP/C:  In order that a real-time system operate reliably, malfunctioning system components must be
identified rapidly and either terminated or isolated from the remainder of the system.  The role of the
membership service component of a real-time protocol is to inform all system nodes of the failure of a
node with minimal delay.  Under TTP/C, a node membership field, maintained as a status register in the
CNI, contains a so-called “node membership vector.”  This node membership vector contains one bit for
every node in a TTP/C cluster, with the bit set to True if the node in question is operating correctly and
to False if the node is not operating or is flawed.  The node membership vector is updated by checking
that expected messages from other nodes in the cluster are received, and by analyzing the cyclic-
redundancy check (CRC) fields in the messages received.  [16]
CAN:  No provision for membership. [11, 12]

Reliability and Fault-Tolerance:
As TTP/C targets embedded systems with safety-critical requirements, the need for highly reliable
operation is clear.  Several aspects of the TTP/C protocol, and the way it is implemented in real-world
systems, serve to provide reliability and fault-tolerant behavior.  One of these, the TTP/C membership
service, is described above.  Other elements include:

>> Fail-Silence:  TTP/C nodes are designed in such a way as to have heavy responsibility for
detecting faults in their own operation.  The principle of operation is that, “each and every
node must deliver results which are correct in both the value and the time domain, or no results
at all.” [17]  If a node detects an abnormality in its operation, it switches itself off.  At a
software level, TTP/C supports, for example, a variety of techniques, including double
execution, double execution with reference checks, validity checks, assertion checking, and
signature checks.
CAN:  No guarantee for fail-silence. [11, 12]

>> Bus Guardian:  The Bus Guardian (BG) is a hardware element of the TTP/C Controller
which serves as a portal to the system bus.  The key role of the Bus Guardian is to enable the
bus driver only during the transmission slot for its node, and otherwise to guarantee that the
bus driver is in a disabled state.  This serves to prevent “babbling idiot” failures.
CAN:  No bus guardian or similar construct. [11, 12]

>>  Replication of System Components:  The TTP/C protocol supports replication of
elements of a real-time system in order to provide fault tolerance.  First the hardware elements
of a node – Host, CNI, and TTP/C controller – can be replicated to provide redundancy in the
case a component fails.  Bundled together, the redundant set of components then form a Fault-
Tolerant Unit (FTU). [18]  In addition, TTP/C supports dual system buses, which carry a
duplicate set of signals.
CAN:  Does not guarantee replica determinism. Does have a two-wire physical interface that
supports “limp home” operation in most fault scenarios. [11, 12]
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One key aspect of TTP/C in error detection is that the receiving node is responsible for identifying
missing or errant transmissions.  This is in contrast to event-driven protocols, where typically the
sending node retains this responsibility through some sort of acknowledgement mechanism.

Modeling and Simulation

Existing Research and Tools:  As TTP/C is only recently becoming commercially viable, there
are not yet many modeling and synthesis tools available.  Prof. Hermann Kopetz has started a
commercial venture to support TTP/C in the marketplace. This company, TTTech, has introduced a tool
set for the commercial development of TTP/C-based systems. However, it currently supports only the
development and implementation of the communication system itself; the tools do not support modeling
of an overall system. Likewise, there is no simulation capability currently present. [19] As TTP/C
contains all the needed services to build time-deterministic systems, suitable for use in safety critical
applications, such an addition would be valuable.

Studies are beginning to appear that support the idea of application-level design being approached using
graph theory. [20] In this paper the authors use conditional process graphs combined with several
scheduling algorithms to demonstrate that it is possible to algorithmically create static schedules for
systems designed as conditional process graphs. Furthermore they show that the schedules can be
bounded, and that a MEDL description allowing the schedule to run on a TTP/C system can be derived.
Of secondary interest is the notion that the ordering of the slots in the TDMA round can be used to
optimize the overall schedule length.

Given that the number of such studies is increasing, we see a need for an environment that would allow
the researcher to quickly create and evaluate how different scheduling algorithms work for a variety of
system architectures.

Requirements for Application-Level Modeling:  Although the detailed requirements of a
complete commercial quality environment are many, the high-level requirements are fairly
straightforward:
I. The scheduling algorithm should be separate from the application modeling environment, but

easy to connect. It should also be easy to implement the algorithm using standard tools.
II. The application modeling domain should have equivalent properties to the final target

system. This ensures the modeled execution is consistent with the final execution on the
target system.

III. The technologies used should be based on already known and easy to work with tools and
languages. The basis for the system is to provide researchers a powerful, but easy to use
environment, allowing them to focus on their studies rather than the creation or learning of a
complex set of methods and tools.

Proposal for Implementation

We propose a partial implementation of a system such as that described above.  This system would
utilize common tools and languages, namely Ptolemy, C++, and C.  We would create an example
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application system.  Having done this, we would devise and implement a scheduling algorithm to
generate the MEDLs for a TTP/C-based system.  In the third activity, we would create new stars within
Ptolemy SDF, that support the modeling and simulation of the devised application system.  These stars
would be created at a high level of abstraction, but with enough detail to allow the introduction of
various faults, such as a broken wire, or babbling idiot node. The goal would be to demonstrate that such
an environment is achievable and allows the modeling of a system in SDF. Although beyond the scope
of this study, the next step would be to actually create a TTP/C system that allows the devised
applications to execute on real hardware and provides the final validation of the approach.

Conclusion

In the course of this paper, we have discussed several key features of automotive safety-critical systems.
We examined a newly available protocol, the TTP/C, and discussed its suitability for implementing such
systems. Additionally, we provided a brief comparison to a leading and widely deployed event triggered
protocol, CAN, to illustrate the strengths of a time-triggered protocol, and how TTP/C address the
weakness in the existing event-driven protocols.  Finally, we described an environment that would allow
researchers in this field to more easily evaluate several aspects of creating TTP/C based systems by
providing a modeling and simulation front-end to supplement existing commercial implementation tools.
As the use of modeling and simulation becomes increasingly prevalent in automotive systems
engineering, and as pressure on design cycle-times increases, this capability will be useful. Additionally
the possibility to further extend the environment to synthesize the final application directly from the
model is an important development.  This would provide not only a productivity enhancement, but also
move the design of safety critical systems for cars one step closer to being a mathematically provable
activity, rather than today’s less rigorous approach.

_______________________________________
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