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Abstract:  TTP/C, which represents one variant of the Time-Triggered Protocol (TTP), is designed to 
address safety-critical real-time control systems in the automotive sector.  Of high interest in analyzing 
TTP/C, given its emphasis on “x-by-wire” environments wherein electronic control systems do not 
have hydraulic or mechanical back-up components, are the aspects of the TTP/C protocol and 
architecture which concern themselves with reliability and fault tolerance.  In this paper, the authors 
briefly discuss the key safety-related constructs of TTP/C.  An experimental project in which a TTP/C-
based braking system was simulated in software, with particular emphasis on the behavior of the “bus 
guardian,” is then described and analyzed. 
 
The sections of this report cover the following topics:  (1) description of the requirements of the SAE 
Class C specification for safety-critical systems; (2) overview of the reliability related aspects of the 
TTP/C protocol and architecture, including the bus guardian; (3) summary of modeling and simulation 
work in TTP/C reported in the literature; (4) description of the objectives and approaches of the 
modeling and simulation work conducted in this project; (5) opportunities for future investigation, and 
(6) summary and conclusions. 

_____________________________________ 
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1.  Introduction and Overview 

 TTP/C, which represents one variant of the Time-Triggered Protocol (TTP), is designed to 

address safety-critical real-time control systems in the automotive sector.  Given the TTP/C emphasis 

on “x-by-wire” environments, in which there exist no mechanical or hydraulic back-ups for a system 

such as brakes or steering in a car, the aspects of TTP/C which provide reliability and fault-tolerance 

are of high interest.  In our project work, we have sought to implement a first-order model of the 

behavior of a TTP/C system for automotive braking, with emphasis on an element of the TTP/C 

controller node called the “bus guardian.” 

 The bus guardian should be considered a representative choice of modeling target, rather than the 

exclusive purpose of this study.  Our objective is to experiment with approaches to broad-based 

modeling of the behavior of TTP/C systems, both when functioning normally and in the presence of 

injected faults.  The bus guardian provides an excellent target for this investigation, given its well-

defined behavioral characteristics, and the fact that it must interact closely and continuously with other 

elements of the TTP/C node. 

 

2.  Description of the Requirements of the SAE Class C Specification 

 The general requirements for safety-critical protocols and systems in the automotive domain are 

defined by the SAE (Society for Automotive Engineers) Class C specification.  The key requirements 

for Class C automotive communication systems include the following [1]:   

• A communication system which supports composability, meaning that subsystems which are 

developed independently, tested, and certified compliant with TTP/C requirements can then be 

integrated with high assurance that they will work together. 

• Support for the connection of replicas of processing units, and for the distribution of these 

replicas, so as to avoid failures of the functions provided by processing units. 

• The provision of an independent device to guard against failures induced by babbling idiots 

(babbling idiots are processing nodes which emit a constant stream of unnecessary messages, 

thus monopolizing the communications bus). 

• Provision of a mechanism that permits a distributed application to know the status of all 

connected system components (in TTP/C, this facility is called the membership service). 
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 Communication systems which are in wide use in automobiles today, such as CAN, A -BUS, 

VAN, J1850-DLC, and J1850-HBCC, cannot meet this rigid set of requirements; most of them lack 

synchronization, fault -tolerant characteristics, and deterministic behavior [2].  

 

3.  Aspects of TTP/C that Assure Reliability and Fault-Tolerance 

 In work at the Technical University of Vienna, Dr. Hermann Kopetz and his colleagues have 

designed TTP/C from the ground up to address stringent reliability requirements, such as those 

reflected in SAE Class 3.  The following contribute to meeting the challenge posed by Class C.  

(1) Dual-Bus Architecture:  Typically, the physical implementation that supports TTP/C 

features a bus with two separate channels, and the TTP/C protocol supports this dual -bus 

model.  Even if one of the bus circuits fails or is cut, signals will continue to travel.  

(2) Fail-Silence:  TTP/C processing nodes (also called Fail Silent Units – FSUs) are designed 

to meet the criterion that each individual node “must deliver either re sults which are 

correct in both the value and the time domain or no results at all.” [3]  Nodes are assigned 

heavy responsibility for guaranteeing this so -called fail -silent property through their 

internal behavior, and thus typically include both hardware  and software mechanisms to 

identify faulty operation. [4]   

(3) Replication:  In addition to replication of the communication bus, TTP/C supports 

replication of system processing nodes at the level of both the Fail Silent Unit and that of 

the Fault Tolerant unit (a Fault Tolerant Unit, or FTU, consists of two or three FSUs, 

providing hardware redundancy).  Under the TTP/C protocol, when a node withdraws 

from the system through internal identification of faulty behavior, or because it has been 

eliminated under TTP/C’s membership resolution capability, the functioning back -up 

node takes over in providing the target service.  

(4) Membership :  The concept of Membership in TTP/C is the community corollary of Fail 

Silence.  Whereas the individual TTP/C node is assigned pr imary responsibility for 

diagnosing and responding to faults in its internal behavior, information about whether a 

node is functioning properly or is faulty must be rapidly shared with all other nodes in a 

TTP/C.  This is the function of the Membership Ser vice.  TTP/C’s Membership Service is 

based on the fact that each node in a TTP/C system has a designated TDMA time slot 
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within which it sends its messages, and all nodes in the system have a priori knowledge 

of this schedule.  Thus, if a node fails (or thr ough self-diagnosis of a fault, chooses not) to 

broadcast a message in its assigned time slot, other nodes are aware of the failure. [5]  

(5) Bus Guardian:  The bus guardian is a module of a TTP/C node (for additional detail on 

the architecture of the TTP/C node, see our earlier Literature Review).  While physically 

located within the TTP/C Controller, the bus guardian functions independently to insure 

that the node it belongs to places messages on the communication bus only within its 

assigned time slot  (there  are actually two bus guardians per node in most TTP/C 

implementations – one for each of the redundant buses).  In the event that the node seeks 

to broadcast a message out of turn, the bus guardian intercepts and cuts off this behavior. 

In this fashion, th e bus guardian protects the communications bus, and the entire TTP/C 

system, against the occurrence of “babbling idiots.”  [6]  

As noted, the primary objective of this project has been to design and implement an initial simulation 

of a TTP/C-based system for vehicular steering control, with emphasis on the behavior of the bus 

guardian.  

 

4.   The Modeling and Simulation of TTP:  Prior Work 

 As the overall TTP family protocol and architecture matures, discussions of modeling and 

simulation have begun to appear in  the literature.  For example, Bernd Hedenetz has reported on work 

conducted at Daimler Benz Research (DBR), which has accumulated experience in designing TTA -

based systems (TTA is the TTP variant for non -safety critical applications such as body electroni cs in 

automobiles). [7]   DBR employs a seven-step system development process for embedded systems 

which includes:  Requirements Specification; Architectural Design; Functional Design; Functional 

Simulation; Fault Modeling; Realization & Implementation; an d Test & Fault Injection.  DBR uses 

Statemate from I-Logix and MatLab/Simulink from MathWorks to support the Functional Design and 

Functional Simulation steps.  Fault modeling can be achieved by injecting faults into the same 

software models.  In the Realization & Integration step, DBR uses code generation tools. [8] 
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5.  Modeling and Simulation Approach in This Project 

 Although some modeling and simulation work has begun to appear related to the design of time 

triggered systems, this is still a newly emerge nt field. As such, much work remains to be done, 

especially regarding how best to exploit the properties of the underlying technologies such as the 

TTP/C protocol at higher levels of the system. Membership, protection against babbling idiot nodes, 

and globally synchronized time are all powerful properties, but require special effort to properly utilize 

them in the application software.  

 In fact, in addition to the properties mentioned above, adding temporal predictability and 

composability to functional composability makes the TTP/C particularly well suited to complex, 

distributed systems including safety -critical systems.  Given these properties and the nature of the 

systems suitable for development using TTP/C, a natural question is how to best go about de signing, 

specifying, and implementing these systems.  In particular, it seemed to the authors that formal 

modeling techniques and the associated body of knowledge and tools would be a very useful 

framework in which to design and simulate TTP/C systems with  an eye to formal verification and 

validation in the future. Additionally, at least some pieces of the working system could then be used to 

synthesize actual production code. 

 Although a complete treatment is beyond the scope of this work, our intent is to  create a high 

level, yet accurate, model of a physical system based on TTP/C. Furthermore, we intend to show that 

such a model can effectively be used to determine the behavior of the modeled system in fault 

conditions that may be difficult to duplicate i n a physical instantiation of the system.  

5. 1 The Physical System: Brake-by-Wire 

 The physical system we chose to model was a simple five node brake -by-wire system. It contains 

a brake pedal node which outputs a single value ranging from 1 to 255, linearl y correlated to the 

position of the pedal. This value is propagated to four brake nodes, which then calculate the required 

force and apply this to the wheel under their control. The brake nodes also output the current value of 

the brake force being applied  to the wheel. A value of 0 is used by the bus guardian to indicate a 

failure mode within the brake node, and that no brake force is being applied to the wheel. Figure 1   

depicts the system we are simulating. The semantics used are as the usual, objects re presented by 

blocks, arrows depict methods, and so on. 

5.2 The Model 

 The model of our brake system was designed to accurately model the operating characteristics of 

the physical system. Figure 2  depicts the order of the nodes’ respective message slots as implemented 
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in our system. The time model used in our simulation is discrete time, where each unit of advancement 

is a single message slot in the cluster cycle. Because the time slot management is done only in the 

schedule, each of the nodes runs once duri ng each slot and is not allowed to advance time. However, 

only the node assigned to a given time slot is allowed to send a value, a characteristic enforced by each 

node’s bus guardian. Additionally the sending node is scheduled first, as the model is faith ful to the 

concept of state variables used in the TTP/C communication model.  

 
Figure 1:  Schematic diagram depicting TTP/C -based steering system simulated in this study.  

The only major departure from an TTP/C actual system we have identified is that our m odel is single 

threaded. In a real system each node would be running simultaneously. This results in variance in how 

some faults would manifest themselves if the TTP/C hardware failed. In particular, a babbling idiot  
 

 
Figure 2:  Order of TTP message slots in the simulation of a TTP/C -based braking system.  
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node would dead-lock a single threaded system if the bus guardian logic failed. So one limitation of 

our approach is in modeling certain faults in the bus guardian logic. We chose to create an incorrec t 

time slot transmission as an application flaw, perhaps by a discrepancy between the MEDL values and 

the nodes’ perceived current time slot value. This fault is modeled correctly at the bus level, as is 

shown in the results section.  

 

  5.3 The Implementation 

 The function main()contains the object instantiations 

and the schedule. It was implemented in C++ and both  the 

MEDL and schedule were created by hand. A sample can be 

seen in Figure 3 illustrating the schedule and object creation..

 Each node type is implemented as a class containing all 

needed data stores and methods. The program was developed 

in Microsoft Visual Studio 5, and run under Windows NT.  

  Figure 3:  Example code 

The code is strictly ANSI compliant, uses no operating system calls, and sho uld be easily portable to any 

system. It was also compiled by the Cygnus g++ compiler for NT.  

 

5.4 Results of Simulation Experiment 
 
 The result of our experiment is that the model performed as expected in both the normal and 

error cases. The error case result is shown in Figure 4  as it is the more interesting of the two.  Observe 

that when the timeslot comparison is corrupted by introducing a static offset, the bus guardian in the 

disturbed node does not allow transmission outside of its timeslot. This err or was introduced in the 

back right wheel during timeslots 125 -149, and in the front left wheel during timeslots 230 -242. See 

Figure 5 for the mechanism used to introduce the error. This would allow the system to compensate by 

not applying brake force to the diagonal wheel, keeping the car traveling in a straight path. The failure 

mode here is silence on the bus and applying no braking force to the wheel. This allows the system the 

chance to adapt and take corrective action. Strengths of the model are that the schedule is fully static, 

and changes can be made to each node’s application code with no effect on the overall systems. Only 

adding or deleting nodes requires a change to the schedule. We were also able to demonstrate that the 

behavior at the bus level can be correctly modeled at a high level, without loss of accuracy, but only 

// Create our bus and all the nodes 
TTP_C_BUS bus(NUMBER_NODES); 
TTP_C_BUS& busRef = bus; 
BrakePedal pedal(PEDAL_ID, 
BRAKE_FULL_ON); 
BrakeNode flBrake(FL_BRAKE_ID); 
BrakeNode frBrake(FR_BRAKE_ID); 
BrakeNode blBrake(BL_BRAKE_ID); 
BrakeNode brBrake(BR_BRAKE_ID); 
  
pedal.pushPedal(busRef, iterate %255); 
 
 
flBrake.applyBrake(busRef); 
frBrake.applyBrake(busRef); 
blBrake.applyBrake(busRef); 
brBrake.applyBrake(busRef); 
bus.nextSlot(); 
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loss of detail. This is important as additional detail needed for each system can be added to individual 

nodes as desired with the assurance that the system will still function correctly. As noted earlier, the 

one exception is the current single -threaded execution model that would allow one node to block 

system execution. 

TTP/C Brake-by-Wire Simulation
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Figure 4:  Results of brake fault injection for back right and    Figure 5:  Fault injection  
front right wheels.        mechanism.  

 

6. Future  Study 

 Several areas identified during our project warrant further development and exploration. The first 

would be the addition of a membership function. This would be quite easy to do in the exis ting 

framework. However, to facilitate easier development of future systems, it would be worthwhile to 

develop the TTP/C functionality as a standard base class and then create derived classes for the system 

nodes that inherit the desired TTP/C functionalit y. This would of course need to be done while 

maintaining suitability for inclusion in higher level systems such as Ptolemy. Additionally, a multi -

threaded execution model would be needed to support the simulation of several failure modes. It may 

also be required if there are any observable system side effects, other than simply monitoring the 

TTP/C bus. Finally, several alternative modeling options are feasible, such as SR (Synchronous 

Reactive) and several other dataflow variants. It would be useful to see a more complete evaluation of 

which combination would be most suitable. In fact, both of the initial approaches we considered 

suffered from at least one violation of the domain semantics. For example, the current message slot 

value is represented as a state variable. Whichever node is assigned to that slot is required to produce a 

value, but all nodes in the system are given a chance to react to the new value in the same instant of 

#define ERROR_ON 
#if defined ERROR_ON 
if (iterate == 230) { 
    flBrake.setSlotOffset(1); 
} 
 
if (iterate == 243) { 
    flBrake.setSlotOffset(0); 
} 
 
if (iterate == 125) { 
    brBrake.setSlotOffset(1); 
} 
 
if (iterate == 150) { 
    brBrake.setSlotOffset(0); 
} 
 
#endif 
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discrete time. This is the mechanism that allows us to model the multi -threaded real system in a single 

thread of execution. Unfortunately, it also means that the number of values produced by a node is 

sometimes zero, and sometimes one. It depends on whether the current timeslot is the one assigned to 

that node. This rules out SDF.  This question of how best to model the TTP/C within the strict domain 

semantics supplied by Ptolemy is important. If a suitable approach was found it would allow the 

modeling and simulation to be done in the existing, full -featured Ptolemy environment , rather than 

requiring the model to be hand coded. There would also be significant validation benefits to mapping 

the TTP/C behavior into a well -studied set of domains, whose properties have already been explored 

and proven. 

 

7. Summary and Conclusion 

 In summary, we have examined the motivation for, development of, and central properties of the 

TTP/C. We were able to apply formal modeling techniques to the design of a simple brake -by-wire 

system. This model was executable and allowed us to demonstrate the be havior of a key TTP/C system 

property, fail-silence, as provided by the bus guardian. Finally, we examined our results and 

highlighted several areas for future study. Hopefully by successfully demonstrating that this is a useful 

and viable approach to the design and simulation of TTP/C based systems, we will encourage future 

studies in how these concepts can be applied to bring these systems to market in a timely and efficient 

manner.  
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