

The Modeling and Simulation of an Automotive Braking System Using the TTP/C Protocol

Robert France and Howard Curtis
(EE382C – Embedded Software Systems)

Abstract: TTP/C, which represents one variant of the Time-Triggered Protocol (TTP), is designed to
address safety-critical real-time control systems in the automotive sector. Of high interest in analyzing
TTP/C, given its emphasis on “x-by-wire” environments wherein electronic control systems do not
have hydraulic or mechanical back-up components, are the aspects of the TTP/C protocol and
architecture which concern themselves with reliability and fault tolerance. In this paper, the authors
briefly discuss the key safety-related constructs of TTP/C. An experimental project in which a TTP/C-
based braking system was simulated in software, with particular emphasis on the behavior of the “bus
guardian,” is then described and analyzed.

The sections of this report cover the following topics: (1) description of the requirements of the SAE
Class C specification for safety-critical systems; (2) overview of the reliability related aspects of the
TTP/C protocol and architecture, including the bus guardian; (3) summary of modeling and simulation
work in TTP/C reported in the literature; (4) description of the objectives and approaches of the
modeling and simulation work conducted in this project; (5) opportunities for future investigation, and
(6) summary and conclusions.

Key Papers:

For the Literature Review portion of our project, the following represent three key papers:

>> Ross Bannatyne, “Time Triggered Protocol: TTP/C,” Embedded Systems Programming, March 1999, pps.
76-86.
>> Hermann Kopetz, “Should Responsive Systems be Event-Triggered or Time-Triggered?”, IEICE
Transactions in Information & Systems, Vol. E76-D, No. 11 (November 1993), pps. 1325-1332.
>> Hermann Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications, Kluwer
Academic Publishers, Norwell (MA), 1997. (Monograph)

For the Simulation and Modeling portion of our project, the following represent three key papers:

>> Elmar Dilger, Thomas Fuhrer, and Bernd Muller, “The X-By-Wire Concept: Time-Triggered Information
Exchange and Fail Silence Support by New System Services,” Advances in Safety Technology, Society of
Automotive Engineers, 1998, pps. 141-149.
>> B. Hedenetz and R. Belschner, “Brake-by-Wire Without Mechanical Backup by Using a TTP-
Communication Network,” SAE International Congress and Exposition (Detroit, Michigan), 1998, pps. 1-9.
>> Hermann Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications, Kluwer
Academic Publishers, Norwell (MA), 1997. (Monograph)

Curtis & France 1 Exec. S’ware Engineering: EE382C

1. Introduction and Overview

 TTP/C, which represents one variant of the Time-Triggered Protocol (TTP), is designed to

address safety-critical real-time control systems in the automotive sector. Given the TTP/C emphasis

on “x-by-wire” environments, in which there exist no mechanical or hydraulic back-ups for a system

such as brakes or steering in a car, the aspects of TTP/C which provide reliability and fault-tolerance

are of high interest. In our project work, we have sought to implement a first-order model of the

behavior of a TTP/C system for automotive braking, with emphasis on an element of the TTP/C

controller node called the “bus guardian.”

 The bus guardian should be considered a representative choice of modeling target, rather than the

exclusive purpose of this study. Our objective is to experiment with approaches to broad-based

modeling of the behavior of TTP/C systems, both when functioning normally and in the presence of

injected faults. The bus guardian provides an excellent target for this investigation, given its well-

defined behavioral characteristics, and the fact that it must interact closely and continuously with other

elements of the TTP/C node.

2. Description of the Requirements of the SAE Class C Specification

 The general requirements for safety-critical protocols and systems in the automotive domain are

defined by the SAE (Society for Automotive Engineers) Class C specification. The key requirements

for Class C automotive communication systems include the following [1]:

• A communication system which supports composability, meaning that subsystems which are

developed independently, tested, and certified compliant with TTP/C requirements can then be

integrated with high assurance that they will work together.

• Support for the connection of replicas of processing units, and for the distribution of these

replicas, so as to avoid failures of the functions provided by processing units.

• The provision of an independent device to guard against failures induced by babbling idiots

(babbling idiots are processing nodes which emit a constant stream of unnecessary messages,

thus monopolizing the communications bus).

• Provision of a mechanism that permits a distributed application to know the status of all

connected system components (in TTP/C, this facility is called the membership service).

Curtis & France 2 Exec. S’ware Engineering: EE382C

 Communication systems which are in wide use in automobiles today, such as CAN, A -BUS,

VAN, J1850-DLC, and J1850-HBCC, cannot meet this rigid set of requirements; most of them lack

synchronization, fault -tolerant characteristics, and deterministic behavior [2].

3. Aspects of TTP/C that Assure Reliability and Fault-Tolerance

 In work at the Technical University of Vienna, Dr. Hermann Kopetz and his colleagues have

designed TTP/C from the ground up to address stringent reliability requirements, such as those

reflected in SAE Class 3. The following contribute to meeting the challenge posed by Class C.

(1) Dual-Bus Architecture: Typically, the physical implementation that supports TTP/C

features a bus with two separate channels, and the TTP/C protocol supports this dual -bus

model. Even if one of the bus circuits fails or is cut, signals will continue to travel.

(2) Fail-Silence: TTP/C processing nodes (also called Fail Silent Units – FSUs) are designed

to meet the criterion that each individual node “must deliver either re sults which are

correct in both the value and the time domain or no results at all.” [3] Nodes are assigned

heavy responsibility for guaranteeing this so -called fail -silent property through their

internal behavior, and thus typically include both hardware and software mechanisms to

identify faulty operation. [4]

(3) Replication: In addition to replication of the communication bus, TTP/C supports

replication of system processing nodes at the level of both the Fail Silent Unit and that of

the Fault Tolerant unit (a Fault Tolerant Unit, or FTU, consists of two or three FSUs,

providing hardware redundancy). Under the TTP/C protocol, when a node withdraws

from the system through internal identification of faulty behavior, or because it has been

eliminated under TTP/C’s membership resolution capability, the functioning back -up

node takes over in providing the target service.

(4) Membership : The concept of Membership in TTP/C is the community corollary of Fail

Silence. Whereas the individual TTP/C node is assigned pr imary responsibility for

diagnosing and responding to faults in its internal behavior, information about whether a

node is functioning properly or is faulty must be rapidly shared with all other nodes in a

TTP/C. This is the function of the Membership Ser vice. TTP/C’s Membership Service is

based on the fact that each node in a TTP/C system has a designated TDMA time slot

Curtis & France 3 Exec. S’ware Engineering: EE382C

within which it sends its messages, and all nodes in the system have a priori knowledge

of this schedule. Thus, if a node fails (or thr ough self-diagnosis of a fault, chooses not) to

broadcast a message in its assigned time slot, other nodes are aware of the failure. [5]

(5) Bus Guardian: The bus guardian is a module of a TTP/C node (for additional detail on

the architecture of the TTP/C node, see our earlier Literature Review). While physically

located within the TTP/C Controller, the bus guardian functions independently to insure

that the node it belongs to places messages on the communication bus only within its

assigned time slot (there are actually two bus guardians per node in most TTP/C

implementations – one for each of the redundant buses). In the event that the node seeks

to broadcast a message out of turn, the bus guardian intercepts and cuts off this behavior.

In this fashion, th e bus guardian protects the communications bus, and the entire TTP/C

system, against the occurrence of “babbling idiots.” [6]

As noted, the primary objective of this project has been to design and implement an initial simulation

of a TTP/C-based system for vehicular steering control, with emphasis on the behavior of the bus

guardian.

4. The Modeling and Simulation of TTP: Prior Work

 As the overall TTP family protocol and architecture matures, discussions of modeling and

simulation have begun to appear in the literature. For example, Bernd Hedenetz has reported on work

conducted at Daimler Benz Research (DBR), which has accumulated experience in designing TTA -

based systems (TTA is the TTP variant for non -safety critical applications such as body electroni cs in

automobiles). [7] DBR employs a seven-step system development process for embedded systems

which includes: Requirements Specification; Architectural Design; Functional Design; Functional

Simulation; Fault Modeling; Realization & Implementation; an d Test & Fault Injection. DBR uses

Statemate from I-Logix and MatLab/Simulink from MathWorks to support the Functional Design and

Functional Simulation steps. Fault modeling can be achieved by injecting faults into the same

software models. In the Realization & Integration step, DBR uses code generation tools. [8]

Curtis & France 4 Exec. S’ware Engineering: EE382C

5. Modeling and Simulation Approach in This Project

 Although some modeling and simulation work has begun to appear related to the design of time

triggered systems, this is still a newly emerge nt field. As such, much work remains to be done,

especially regarding how best to exploit the properties of the underlying technologies such as the

TTP/C protocol at higher levels of the system. Membership, protection against babbling idiot nodes,

and globally synchronized time are all powerful properties, but require special effort to properly utilize

them in the application software.

 In fact, in addition to the properties mentioned above, adding temporal predictability and

composability to functional composability makes the TTP/C particularly well suited to complex,

distributed systems including safety -critical systems. Given these properties and the nature of the

systems suitable for development using TTP/C, a natural question is how to best go about de signing,

specifying, and implementing these systems. In particular, it seemed to the authors that formal

modeling techniques and the associated body of knowledge and tools would be a very useful

framework in which to design and simulate TTP/C systems with an eye to formal verification and

validation in the future. Additionally, at least some pieces of the working system could then be used to

synthesize actual production code.

 Although a complete treatment is beyond the scope of this work, our intent is to create a high

level, yet accurate, model of a physical system based on TTP/C. Furthermore, we intend to show that

such a model can effectively be used to determine the behavior of the modeled system in fault

conditions that may be difficult to duplicate i n a physical instantiation of the system.

5. 1 The Physical System: Brake-by-Wire

 The physical system we chose to model was a simple five node brake -by-wire system. It contains

a brake pedal node which outputs a single value ranging from 1 to 255, linearl y correlated to the

position of the pedal. This value is propagated to four brake nodes, which then calculate the required

force and apply this to the wheel under their control. The brake nodes also output the current value of

the brake force being applied to the wheel. A value of 0 is used by the bus guardian to indicate a

failure mode within the brake node, and that no brake force is being applied to the wheel. Figure 1

depicts the system we are simulating. The semantics used are as the usual, objects re presented by

blocks, arrows depict methods, and so on.

5.2 The Model

 The model of our brake system was designed to accurately model the operating characteristics of

the physical system. Figure 2 depicts the order of the nodes’ respective message slots as implemented

Curtis & France 5 Exec. S’ware Engineering: EE382C

in our system. The time model used in our simulation is discrete time, where each unit of advancement

is a single message slot in the cluster cycle. Because the time slot management is done only in the

schedule, each of the nodes runs once duri ng each slot and is not allowed to advance time. However,

only the node assigned to a given time slot is allowed to send a value, a characteristic enforced by each

node’s bus guardian. Additionally the sending node is scheduled first, as the model is faith ful to the

concept of state variables used in the TTP/C communication model.

Figure 1: Schematic diagram depicting TTP/C -based steering system simulated in this study.

The only major departure from an TTP/C actual system we have identified is that our m odel is single

threaded. In a real system each node would be running simultaneously. This results in variance in how

some faults would manifest themselves if the TTP/C hardware failed. In particular, a babbling idiot

Figure 2: Order of TTP message slots in the simulation of a TTP/C -based braking system.

Curtis & France 6 Exec. S’ware Engineering: EE382C

node would dead-lock a single threaded system if the bus guardian logic failed. So one limitation of

our approach is in modeling certain faults in the bus guardian logic. We chose to create an incorrec t

time slot transmission as an application flaw, perhaps by a discrepancy between the MEDL values and

the nodes’ perceived current time slot value. This fault is modeled correctly at the bus level, as is

shown in the results section.

 5.3 The Implementation

 The function main()contains the object instantiations

and the schedule. It was implemented in C++ and both the

MEDL and schedule were created by hand. A sample can be

seen in Figure 3 illustrating the schedule and object creation..

 Each node type is implemented as a class containing all

needed data stores and methods. The program was developed

in Microsoft Visual Studio 5, and run under Windows NT.

 Figure 3: Example code

The code is strictly ANSI compliant, uses no operating system calls, and sho uld be easily portable to any

system. It was also compiled by the Cygnus g++ compiler for NT.

5.4 Results of Simulation Experiment

 The result of our experiment is that the model performed as expected in both the normal and

error cases. The error case result is shown in Figure 4 as it is the more interesting of the two. Observe

that when the timeslot comparison is corrupted by introducing a static offset, the bus guardian in the

disturbed node does not allow transmission outside of its timeslot. This err or was introduced in the

back right wheel during timeslots 125 -149, and in the front left wheel during timeslots 230 -242. See

Figure 5 for the mechanism used to introduce the error. This would allow the system to compensate by

not applying brake force to the diagonal wheel, keeping the car traveling in a straight path. The failure

mode here is silence on the bus and applying no braking force to the wheel. This allows the system the

chance to adapt and take corrective action. Strengths of the model are that the schedule is fully static,

and changes can be made to each node’s application code with no effect on the overall systems. Only

adding or deleting nodes requires a change to the schedule. We were also able to demonstrate that the

behavior at the bus level can be correctly modeled at a high level, without loss of accuracy, but only

// Create our bus and all the nodes
TTP_C_BUS bus(NUMBER_NODES);
TTP_C_BUS& busRef = bus;
BrakePedal pedal(PEDAL_ID,
BRAKE_FULL_ON);
BrakeNode flBrake(FL_BRAKE_ID);
BrakeNode frBrake(FR_BRAKE_ID);
BrakeNode blBrake(BL_BRAKE_ID);
BrakeNode brBrake(BR_BRAKE_ID);

pedal.pushPedal(busRef, iterate %255);

flBrake.applyBrake(busRef);
frBrake.applyBrake(busRef);
blBrake.applyBrake(busRef);
brBrake.applyBrake(busRef);
bus.nextSlot();

Curtis & France 7 Exec. S’ware Engineering: EE382C

loss of detail. This is important as additional detail needed for each system can be added to individual

nodes as desired with the assurance that the system will still function correctly. As noted earlier, the

one exception is the current single -threaded execution model that would allow one node to block

system execution.

TTP/C Brake-by-Wire Simulation

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300

Linear Pedal Position

B
ra

ke
 F

or
ce

 A
pp

lie
d

Front Left
Front Right
Back Left
Back Right

Figure 4: Results of brake fault injection for back right and Figure 5: Fault injection
front right wheels. mechanism.

6. Future Study

 Several areas identified during our project warrant further development and exploration. The first

would be the addition of a membership function. This would be quite easy to do in the exis ting

framework. However, to facilitate easier development of future systems, it would be worthwhile to

develop the TTP/C functionality as a standard base class and then create derived classes for the system

nodes that inherit the desired TTP/C functionalit y. This would of course need to be done while

maintaining suitability for inclusion in higher level systems such as Ptolemy. Additionally, a multi -

threaded execution model would be needed to support the simulation of several failure modes. It may

also be required if there are any observable system side effects, other than simply monitoring the

TTP/C bus. Finally, several alternative modeling options are feasible, such as SR (Synchronous

Reactive) and several other dataflow variants. It would be useful to see a more complete evaluation of

which combination would be most suitable. In fact, both of the initial approaches we considered

suffered from at least one violation of the domain semantics. For example, the current message slot

value is represented as a state variable. Whichever node is assigned to that slot is required to produce a

value, but all nodes in the system are given a chance to react to the new value in the same instant of

#define ERROR_ON
#if defined ERROR_ON
if (iterate == 230) {
 flBrake.setSlotOffset(1);
}

if (iterate == 243) {
 flBrake.setSlotOffset(0);
}

if (iterate == 125) {
 brBrake.setSlotOffset(1);
}

if (iterate == 150) {
 brBrake.setSlotOffset(0);
}

#endif

Curtis & France 8 Exec. S’ware Engineering: EE382C

discrete time. This is the mechanism that allows us to model the multi -threaded real system in a single

thread of execution. Unfortunately, it also means that the number of values produced by a node is

sometimes zero, and sometimes one. It depends on whether the current timeslot is the one assigned to

that node. This rules out SDF. This question of how best to model the TTP/C within the strict domain

semantics supplied by Ptolemy is important. If a suitable approach was found it would allow the

modeling and simulation to be done in the existing, full -featured Ptolemy environment , rather than

requiring the model to be hand coded. There would also be significant validation benefits to mapping

the TTP/C behavior into a well -studied set of domains, whose properties have already been explored

and proven.

7. Summary and Conclusion

 In summary, we have examined the motivation for, development of, and central properties of the

TTP/C. We were able to apply formal modeling techniques to the design of a simple brake -by-wire

system. This model was executable and allowed us to demonstrate the be havior of a key TTP/C system

property, fail-silence, as provided by the bus guardian. Finally, we examined our results and

highlighted several areas for future study. Hopefully by successfully demonstrating that this is a useful

and viable approach to the design and simulation of TTP/C based systems, we will encourage future

studies in how these concepts can be applied to bring these systems to market in a timely and efficient

manner.

8. References

[1] B. Hedenetz and R. Belschner, “Brake-by-Wire Without Mechanical Backup by Using a TTP -
Communication Network,” SAE International Congress and Exposition (Detroit, Michigan), Feb. 1998, p. 2.
[2] B. Hedenetz and R. Belschner, “Brake-by-Wire Without Mechanical Backup by Using a TTP -
Communication Network,” p. 2.
[3] B. Hedenetz and R. Belschner, “Brake-by-Wire Without Mechanical Backup by Using a TTP -
Communication Network,” p. 3.
[4] Elmar Dilger, Thomas Fuhrer, Bernd Muller, and Stefan Poledna, “The X -By-Wire Concept: Time-
Triggered Information Exchange and Fail Silence Support by New System Services,” p. 145.
[5] Hermann Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications, pps. 133
and 179.
[6] Hermann Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications, p. 173.
[7] Bernd Hedenetz, “A Development Framework for Ultra-Dependable Automotive Systems Based on a
Time-Triggered Architecture”, the 19 th IEEE Real-Time Systems Symposium, Dec. 1998, pps. 358-367.
[8] Bernd Hedenetz, “A Development Framework for Ultra-Dependable Automotive Systems Based on a Time-
Triggered Architecture”, the 19 th IEEE Real-Time Systems Symposium, Dec. 1998, pps. 360.

