Time Triggered Protocol (TTP/C): A Safety-Critical System Protocol

Literature Review EE382c Fall 1999

Howard Curtis
Global Technology Services
MCC

Robert France Global Software Division Motorola, Inc.

The Evolution of Automotive Electronics

1960's

1970'S

1980's

1990's

- Button Rectifiers
- Positive Crankcase Ventilation
- Power Steering

- Unleaded Gas
- 2 & 3-Way Catalytic Converters
- Engine Control
- Fuel Injection
- Fuel Mix Sensors
- MPU's

- Reformulating Gas
- High speed MCU for realtime control
- Cold Start
- Onboard Diagnostic level 2
- Valve timing control
- Airbags
- Electric power steering
- Adaptive cruise control
- ABS with traction control and vehicle stability
- First available EVs and hybrids

Automotive Electronics Market Development

Automotive Semiconductor TAM World-Wide [\$B]

Electronics and electromechanics ('Mechatronics') are replacing hydraulic and mechanical components in vehicles.

The role of the driver will (gradually) change from machine operator to supervisor of a transportation system.

Total Connectivity in the Vehicle

Event-Triggered vs Time-Triggered Systems

- Event-triggered systems react to events
 - Reception of a message
 - Termination of a task
 - External interrupt
- Time-triggered systems derive actions from the progression of a globally synchronized time base
 - Transmission of messages
 - Task execution
 - Monitoring of external states

Time-Triggered Protocols

- TTP: Family of TDMA based, fault tolerant protocols.
- TTP/C: A communication protocol specifically designed for safety-related automotive applications.
- The development of TTP and TTP/C has been led by Prof. Hermann Kopetz, Technical University of Vienna.
- The commercial development of TTP/C tools and products is led by TTTech.
- Existing protocols J1850 and CAN meet the the bandwidth specification for an SAE Class C protocol, but not the fault tolerant requirements.

TTP/C Node Architecture

Host

- The Host runs the application software.

Controller Network Interface (CNI)

- De-couples the applications-level software from the network using dual ported RAM.
- Contains the Message Descriptor List (MEDL) controlling bus access.

TTP/C Communications Controller

- Provides the actual connection between the TTP/C node and the shared network.
- "...the TTP/C controller provides guaranteed transmission times with minimal latency, jitter, fault-tolerant clock synchronization, and fast error detection."

(Ross Bannatyne, "Time Triggered Protocol ...," Wescon 1998, p. 88.)

Replica Determinant

- Allows multiple parallel nodes for fault tolerance

Fail Silent

- Enforced by bus guardians.

TTP/C Cluster

Nodes are Smallest Replaceable Units (SRUs) **Fault Tolerant Units**

(FTUs): Groups of actively replicated

nodes

Duplicated broadcast busses

Communication Network Interface (CNI):

Communication Subsystem

- System partitioning: autonomous TTP controllers, host CPUs
- Hides communication subsystem behind memory abstraction
- Predictable interface behavior achieves composability

TTP/C Communication Properties

Static Scheduling

- Guaranteed delivery times with known variance (jitter).

Clock Synchronization

- All nodes synchronized to within one microsecond each TDMA round.

Composability

TTP/C nodes are temporally composable as well as functionally composable.
 This is a key property of being replica determinant.

Fail Silent

- The bus guardians ensure transmission only during the correct timeslot, in all cases.

Membership

Every node's membership is available during each TDMA round.

TTP/C Bus Access Scheme

Time Division Multiple Access

- Fixed assignment of slots to nodes
- Every node periodically

Message Descriptor List (MEDL):

- Static data structure
- Message dispatching table

X-by-Wire Systems

- Mechanical & hydraulic subsystems controlling safety-related functions are replaced by computer control systems
 - Examples: brake-by-wire, steer-by-wire, vehicle dynamics control, active suspension
- Advantages: Cost reduction, weight reduction, easier design, assembly and maintenance, passenger safety and comfort
- Safety-critical applications require:
 - Fault tolerance: no single fault may lead to a system failure
 - Predictable and timely system behavior
 - Synchronized time base (global time)

Evolution of Steering Systems

Hydraulic Power Assist (Conventional Steering)

Electric Power Assist (Newest Technology)

Steer By Wire Systems

Modeling & Simulation in Automotive Design

Simulation Results

Summary & Conclusions

- Safety critical systems are the next big development area in the automotive industry.
- TTP/C provides the basic features needed for implementing safety critical systems.
- Modeling and Simulation are increasingly important to designing highly complex, safety critical systems affordably.
- Proposed project to implement a partial high level model of TTP/C in Ptolemy as proof of concept.
- Prof. Hermann Kopetz lecturing at UT, Nov. 18.