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Introduction

Nobody likes missing deadlines. That kind of behavior can do horrible things to a

class grade or cause trouble in the office. However, when dealing with hard deadlines in

real-time systems, the consequences can be much more severe. If a hard real-time system

misses its deadline, it can mean safety problems for patients at hospitals, thousands of

dollars of lost product at a factory, or even failure for a multi-million dollar space

mission. These consequences make scheduling in hard real-time systems a very relevant

area of study. This survey discusses rate monotonic theory (analysis and scheduling), a

model that allows schedulability analysis for real-time systems.

Basic Premises

The term rate monotonic derives from a method of assigning priorities to a set of

processes as a monotonic function of their rates. [4] While rate monotonic scheduling

systems use rate monotonic theory for actually scheduling sets of tasks, rate monotonic

analysis can be used on tasks scheduled by many different systems to reason about

schedulablility. We say that a task is schedulable if the sum of its preemption, execution,

and blocking is less than its deadline.[2] A system is schedulable if all tasks meet their

deadlines. Rate monotonic analysis provides a mathematical and scientific model for

reasoning about schedulability.



Assumptions

Reasoning with rate monotonic analysis requires the presence of the following

assumptions [4]:

• Task switching is instantaneous.

• Tasks account for all execution time.

• Task interactions are not allowed.

• Tasks become ready to execute precisely at the beginning of their periods and

relinquish the CPU only when execution is complete.

• Task deadlines are always at the start of the next period.

• Tasks with shorter periods are assigned higher priorities; the criticality of

tasks is not considered.

• Task execution is always consistent with its rate monotonic priority: a lower

priority task never executes when a higher priority task is ready to execute.

It is immediately obvious that some of these assumptions do not completely

conform to actual systems. However, extensions to broaden these assumptions will be

discussed later. The importance of these assumptions is that they allow reasoning with

certainty about whether or not a set of tasks can be scheduled.

Benefits

Given certain information about a particular set of tasks, under rate monotonic

conditions, one can evaluate certain tests to understand whether or not those tasks can all

meet their deadlines in a real time system. Because these values are known at design time

and are monotonic, any analysis and scheduling can be done statically. Static scheduling

is one advantage that the industry has a strong preference for in hard real-time



applications. [4] This subsection will examine two schedulability tests that can be used

under rate-monotonic assumptions.

Given the computation time, Ci, and period, Ti, for task i, its CPU utilization can

be calculated with the following equation:

Ui = Ci/Ti

For rate monotonic scheduling, the processor utilization for n tasks has been shown to be

the following:

U(n) = n(21/n – 1)

U(n) asymptotically converges to ln(2) or 69%, which is less efficient than some runtime

schedulers such as earliest deadline, but again, there is a strong preference for static

scheduling. [4] The utilization bound (UB) test allows schedulability analysis by

comparing the calculated utilization for a set of tasks and comparing that total to the

theoretical utilization for that number of tasks:

C1/T1 + … + Cn/Tn <= U(n) = n(21/n – 1)

If this equality is satisfied, all of the tasks will always meet their deadlines. If the total

utilization calculates to greater than 100%, the system will have scheduling problems.

However, if the total utilization is between the utilization bound and 100%, the UB test is

inconclusive and a more precise test must be used.

The response time (RT) test allows analysis of schedulability based upon the

following theorem:

For a set of independent periodic tasks, if each task meets its deadline with

worst case task phasing, the deadline will always be met. [2]



The RT test requires computation of the response time of each task in the system. Based

on the above theorem if each response time is less than its corresponding period, the

system is schedulable. The following is the calculation for an or the response time of task

i:

The test terminates when an+1 = an. The system is schedulable if each response time

finishes before its deadline.

Extensions

The interplay between research and application has resulted in the extension of

rate monotonic theory from its original form of scheduling independent periodic tasks to

scheduling both periodic and aperiodic tasks with synchronization requirements and

mode change requirements. [4] These extensions have greatly enhanced the usability of

the model while maintaining its desirable property of allowing mathematical reasoning

about schedulability. The following subsections discuss some of these extensions.

Sporadic Server

Most systems are not limited to periodic tasks that happen regularly and

monotonically, but also include aperiodic tasks. These tasks can be included in the model

by the addition of one or more aperiodic servers. An aperiodic server is a conceptual task

that is endowed with an execution budget and a replenishment period. An aperiodic

server will handle randomly arriving requests at its assigned priority (determined by the

RM algorithm based on its replenishment period) as long as the budget is available. [4]
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Several versions of the aperiodic server were developed before a suitable one was

found. That algorithm is the sporadic server algorithm. The sporadic server, like its

predecessors, allocates a computation budget and a replenishment period to the execution

of aperiodic tasks. However, with the sporadic server, the aperiodic task budget is not

replenished periodically, but is replenished only after a period in which it was completely

consumed. This implementation avoids a subtle violation of the rate monotonic

assumptions, known as the deferred execution effect, that troubled earlier versions with

different replenishment techniques. With this violation eliminated, the sporadic server is

an aperiodic server that is equivalent to any periodic task under the rate monotonic

assumptions.

Priority Ceiling Protocol

The NASA Mars Lander project was subject to hard deadline failures due to a

condition called unbounded priority inversion. The lander had a number of instruments

that communicated by a 1553 bus. The lander ran two processes that were critical to the

correct operation of these instruments. The information distribution task had third priority

in the system and the bus-scheduling task had first priority. Both of these tasks checked

to see if the other had completed successfully during the cycle. The distribution task

shared a synchronized resource with the low priority ASI/MET (accelerometer, radio

altimeter, meteorological science) task.

During execution, the ASI/MET task acquired the shared resource and was

subsequently preempted by several medium priority tasks. The distribution task was

blocked and failed to meet its hard deadline. The bus-scheduler detected the failure and



reset the system. This problem was eventually detected and solved by initiating priority

inheritance, discussed hereafter. [3]

For rate monotonic analysis to apply to systems where tasks share resources, it

must address the issue of unbounded priority inversion. Unbounded priority inversion, as

shown above, occurs when a high priority task fails to meet a hard deadline due to being

blocked by a low priority task that has acquired a shared resource. This low priority

process continues to hold the resource because it is preempted repeatedly by medium

priority processes.

Two properties are added to avoid this condition, priority inheritance and priority

ceilings. When a task blocks the execution of higher priority tasks it inherits the highest

priority level of all of the tasks it blocks. In addition, a critical section is allowed to be

entered only if the critical section will execute at a priority level that is higher than the

inherited priority levels of any preempted critical sections. A system with these two

properties has bounded priority inversion and is free from mutual deadlock. [4]

With these properties and guarantees in place, rate monotonic analysis allows

reasoning about schedulability in systems where tasks share resources. To incorporate

blocking into this reasoning, terms for blocking must be added to the UB and RT test. For

UB, Bi/Ti must be added for each task i, where Bi is the maximum blocking time

experienced by task i. In the RT test, Bi must be added to each iteration of an+1. With

these adjustments made, the tests can be used in the same ways that they were before.

Other Application to Non Rate Monotonic Domains

Other extensions have been added to rate monotonic analysis to make it more

widely applicable. [2] discusses extensions that deal with context switching overhead and



preemption by fixed priority interrupt tasks. In addition, [4] discusses a protocol for mode

changes, or the addition or deletion of tasks. These are all made possible with either

added terms added to the base tests or with rules for maintaining the rate monotonic

assumptions.

Conclusion

With their continuing partnerships with industry companies, SEI and CMU have

worked to develop rate monotonic analysis into a widely used and practically applicable

technique. By extending an originally restrictive theory, they have succeeded in covering

many commonly occurring situations in real-time systems. These efforts have allowed

rate monotonic analysis to be used successfully to analyze schedulability in rate

monotonic scheduling systems and also in systems that use other scheduling algorithms.
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