
1

Rate Monotonic Analysis in the RMADriver
Application

Nate Forman, EE382c Embedded Software Systems

1. Introduction

For a person, consequences for late task completion may include a bad grade or

performance review In hard real-time systems such as medical systems, factory control

systems, and travel control systems, late task completion can be far more disastrous.

Developers of these systems must guarantee that each task meets its deadline.

When a real-time system adheres to rate monotonic conditions, static analysis

can be performed to confirm that each task meets its deadline. This paper reviews rate

monotonic theory and describes software that has been written to perform rate

monotonic schedulability tests.

2. Rate Monotonic Assumptions

Rate monotonic analysis confirms schedulability for tasks in a single-processor

real-time system with hard deadlines. It assumes that each task repeats periodically and

requires a fixed amount of processor execution time within that period. Figure 1 shows

a graphical example of the behavior of two rate monotonic tasks.

Reasoning with rate monotonic analysis requires the system to conform to the

following assumptions [4]:

• Task switching is instantaneous

• Tasks account for all processor execution time.

2

• Task interactions are not allowed.

• Tasks become ready to execute precisely at the beginning of their periods

and relinquish the CPU only when execution is complete.

• Task deadlines are always at the end of the current period.

• Tasks with shorter periods are assigned higher priorities; no other criteria are

considered for priority assignment.

• Task execution is always consistent with rate monotonic priority: a lower

priority task never executes when a higher priority task is ready to execute.

The rate monotonic conditions as specified above allow static schedulability tests to be

performed on task sets given each period and execution time. Section 3 explains these

tests in detail. This set of assumptions is highly restrictive and few real systems, if any,

actually conform to all of them. Section 4 explains extensions to the assumptions and

adjustments to the tests to include the extensions. Section 5 describes an application that

implements the extended rate monotonic analysis tests.

Figure 1: Two tasks executing in a system under rate monotonic conditions.

Task 1

Task 2

Time Executing Task (C) Period End/Beginning (T)Task Switching

3

3. Schedulability Tests

A rate monotonic task, i, has a period length (Ti) and an execution time (Ci). The

processor utilization for a set of n tasks is given by the following equation [2]:

The processor utilization for a set of n tasks is the sum of each individual task’s

utilization. If the utilization for a set of tasks is over 100%, that set of tasks is clearly

unschedulable.

The asymptotic processor utilization bound for a set of n rate monotonic tasks is

given by the following equation [2]:

As the number of tasks approaches infinity, U(n) converges on 69%. Although some

runtime schedulers, such as earliest deadline, offer much higher utilization, industry

shows a strong preference for the static analysis offered by scheduling under rate

monotonic conditions [4].

The utilization bound test compares the processor utilization for a set of tasks

with the utilization bound for that number of tasks. If the utilization falls below the

bound, the tasks will all meet their hard deadlines under rate monotonic conditions. If

the utilization is above 100%, the tasks are not schedulable. If the utilization falls

between the bound and 100%, the test is inconclusive and a more precise test is

required.

Ui =
Ci

Ti

U(n) = n (2 - 1)
1
n

4

 For a set of independent periodic tasks, if a task meets its deadline with worst

case task phasing, the deadline will always be met [2]. The response time test

compares the response time of a task with worst-case task phasing to its deadline to see

if the task is schedulable. The response time for a task can be calculated as the least

fixed-point of the following recurrence:

In the recurrence, H represents the subset of the set of tasks whose priorities are higher

than the task in question, i. If the task’s response time is less than its deadline, the task

is schedulable, otherwise it is unschedulable.

4. Extensions

As mentioned above, the rate monotonic assumptions are highly restrictive and

few real systems, if any, conform to all of them. The interplay between research and

application has resulted in the extension of rate monotonic theory in several ways to

make it more broadly applicable. These extensions include:

• Handling for aperiodic tasks

• Preperiod task deadlines

• Nonzero task switching times

• Interrupt handling for top-priority tasks

• Tasks blocking each other because of shared resources

This section focuses on how the schedulability tests are affected by these extensions to

rate monotonic theory.

a0 = Σ
j ∈ H+{i}

Cj
an

Tj
an+1 = Ci + Σ

j ∈ H
 Cj

5

Aperiodic tasks are handled by a process called a sporadic server. Sporadic

servers are assigned a period and execution budget like other rate monotonic tasks.

These servers operate at their rate monotonic priority and execute aperiodic tasks as

needed until their execution budget is depleted. The execution budget is replenished at

the beginning of a period after the budget has run out. Because sporadic servers operate

under the original rate monotonic assumptions, no adjustments need to be made to the

schedulability tests.

For the rest of the above extensions, the response time test does not change

drastically. Preperiod task deadlines are handled by comparing the response time to the

deadline instead of the end of the period. An extra term for blocking is added into each

generation of the recurrence, and twice the task switching delay is added into each task

execution time. The extended response time test is as follows:

In the above recurrence, S is the amount of task switching time for tasks in the system

and Bi is the time that task i spends blocked. For detail on how tasks can block each

other without inducing deadlock or unbounded priority inversion, see [4]. For an

example of problems caused by unbounded priority inversion, see [3].

These extensions change the utilization bound test much more drastically. First,

preperiod deadlines make it necessary to change the utilization bound calculation and

perform it for each task separately:

a0 = Bi + Σ
j ∈ H+{i}

(Cj +2S)
an

Tj
an+1 = Bi + Ci + 2S + Σ

j ∈ H
(Cj + 2S)

U(n, ∆i) =
n ((2∆i)

1/n - 1) + 1 - ∆i, 0.5 < ∆i ≤ 1.0

∆i, ∆i ≤ 0.5

6

∆i in the above equation is the ratio of the preperiod deadline of task i, Di, to its period

length, Ti.

Interrupt servers, tasks which maintain high priority regardless of period length,

cause the utilization for each task to be calculated separately and take into account

preemptions from longer period tasks as well as those with shorter periods. The

processor utilization for each task can be calculated with the following:

Hn is the set of higher priority tasks that have periods shorter than task i and therefore

preempt it more than once. H1 is the set of higher priority tasks that have periods longer

than the period of task i, and therefore preempt it only once. Each fi can be compared to

U(n, ∆i) as in the utilization bound test before. Any inconclusive results can be tested

using the extended response time test. For a detailed explanation of interrupt servers,

see [2].

5. Results: The RMADriver Application

Some systems, like the one discussed in [5], provide complete rate monotonic

scheduling systems. The solution presented in this paper simply analyzes a task set for

schedulability. It does so using the extended schedulability tests explained above.

The RMADriver application is a command line application written using IBM

VisualAge for Java and is compatible with JDK 1.1.6. It is written to perform the

extended rate monotonic schedulability tests on sets of tasks given the necessary

fi = Σ + + + Σ (Ck + 2S)
j ∈ Hn k ∈ H1

Cj + 2S

Tj Ti

Ci + 2S

Ti

Bi

Ti

1

7

information about those tasks. In addition, the classes used by RMADriver have been

developed to be reusable as an API for other rate monotonic analysis applications.

The RMADriver application presents the user with a command-line, menu-

driven interface. This interface allows a user to enter task information or load it from a

text file. For convenience, it allows task sets to be saved to text files in the same format

that it reads. Tasks in the system consist of a set of information representing execution

time, period, deadline, and blocking time as well as whether or not the task is an

interrupt server. The application also allows the user to set a task switching delay for the

entire system.

Figure 2: The UML class diagram for the RMADriver application.

When all of the tasks have been entered, the user instructs the application to test

the set for schedulability. The application performs the utilization bound test on each

<<interface>>
Task

+compare(:Task):int
+getBlockTime():double
+getComputationTime():double
+getDeadline():double
+getPeriod():double
+isInterruptServer():boolean

SimpleTask

<<constructor>>
+SimpleTask

-comp:double
-period:double
-deadline:double
-blocking:double
-interrupt:boolean

TaskList

-switchtime:double

<<constructor>>
+TaskList
<<iv-mgmt>>
+getSwitchTime():double
+setSwitchTime(:double)
<<rma-tests>>
+getResponseTime(:int):double
+getUtilization(:int):double
+performTests():Vector

java.util.Vector

TestResults

+SCHEDULABLE:int
+INCONCLUSIVE:int
+UNSCHEDULABLE:int

<<constructor>>
+TestResults
<<iv-mgmt>
+getBound():double
+getDeadline():double
+getResponse():double
+getUtilization():double
<<test-results>>
+getRTResult():int
+getUBResult():int
+isSchedulable():boolean

RMADriver

+main(:String)
+printTaskList(:TaskList)
+printTestResults(:Vector)
+promptForTask()
+readTasksFromFile(:TaskList, :String)
+writeTasksToFile(:TaskList, :String)

0..*

Tests

Populates

Manages-Contents-Of

1

Creates

0..* Prints-Results

8

task and reports the results. If the utilization bound test is inconclusive, it also executes

the response time test and reports the results.

The advantage to the RMADriver application is the design of its TaskList

component. This Java class is designed to read an interface that returns information

about a task rather than depending upon a specific task object. This design allows the

TaskList to run its tests on any task set that can be adapted to that interface. Therefore,

although this specific application only uses SimpleTask instances that simply hold the

necessary data, the TaskList class could be used for rate monotonic analysis on actual

real-time systems, as well. In addition, instances of the TaskList class report test results

in the form of a Vector of TestResults objects. This form of reporting allows

applications to review test results without rerunning the actual tests.

6. Bibliography

1. Fowler, P., and L. Levine, Technology Transition Push: A Case Study of Rate

Monotonic Analysis (Part 1), Technical Report CMU/SEI-93-TR-29 ESC-TR-93-

203, December 1993.

2. Obenza, R., and G. Mendal, Guaranteeing Real-Time Performance Using RMA,

Tutorial 113, The Embedded Systems Conference, San Jose, CA, November 1998.

3. Reeves, G., What Really Happened On Mars?—Authoritative Account,

research.microsoft.com, 1997.

4. Sha, L., Klein, M. H., and J. B. Goodenough, Rate Monotonic Analysis, Technical

Report CMU/SEI-91-TR-6 ESD-91-TR-6, March 1991.

5. Watson, B., Using PERTS and PERTS*SIM to Analyze End-to-End Completion

Times, Tri-Pacific Software, Alameda, CA.

