

Norman James Embedded Systems November 1999

Phase-Locked Loop (PLL) Primer

- Used for clock generation/distribution in computers
- Capable of frequency multiplication and phase alignment of clocks
- Can be implemented as a separate clock chip or internal to a microprocessor, ASIC, etc.

Clock Distribution Example

- PFD (phase-frequency detector) generates up or down pulses depending on whether the feedback is leading or lagging the reference. The pulse is proportional to the phase difference
- Charge pump converts the pulses to current and pumps the filter up or down.
- The VCO (voltage-controlled oscillator) uses the voltage on the filter to control its frequency
- The divider frequency divides the clock

PLL Performance

- Cycle-to-cycle and period jitter (clock accuracy)
- Long-term jitter
 - Loop bandwidth
- Must be independent of multiplier

Current methods of PLL simulation

ΤοοΙ	Domain	Pros	Cons
SPICE	time	accurate	slow for PLL sims; too much data accuracy; difficult to model
EESof	frequency	fast	
Analytical	s-domain z-domain time	fast	not accurate

More on SPICE:

•PLL's have clock frequencies of > 1GHz and loop bandwidths of < 5 MHz

•Full loop simulation can take a week and generates files > 100 MB

CycleSim

- The PLL is modeled as DDF (not statically schedulable)
- Implemented in C++; each object is a node
- Clock sources such as VCO and reference have tokens that represent time tags
 - Time tags represent the point in time at which a clock waveform crosses a threshold on a rising edge
- Each iteration of the simulation is one cycle of the clock sources
- During each iteration the time tags are adjusted accordingly

(sa)sgeT smiT

CycleSim (part 2)

- Reference clock produces periodic time tags
- Phase-frequency detector outputs phase difference between the reference clock and the divider
- Charge pump integrates current over the phase difference and produces a change in voltage
- Loop filter accumulates changes in voltage off charge pump
- VCO uses voltage from loop filter to produce an output time tag

PLL Tracking a Noise Event on the VCO

Conclusions

- PLL's are mixed signal circuits which makes them difficult to simulate, especially in the time domain
- The cycle domain is more "natural" for describing PLL's as clock sources
- CycleSim is several orders of magnitudes faster than SPICE making it easy to fine tune current designs and explore new ones