
Cache Justification for Digital Signal Processors

by

Michael J. Lee

December 3, 1999

2

Cache Justification for Digital Signal Processors

By

Michael J. Lee

Abstract

Caches are commonly used on general-purpose processors (GPPs) to improve

performance by reducing the need to go to off-chip memory every time program

instruction or data is needed. However, digital signal processors (DSPs) traditionally did

not incorporate any caches, but instead mainly relied on fast on-chip memory banks.

Although some DSPs made use of small instruction caches, none had integrated a data

cache. This paper will discuss the justification for having caches on DSP processors and

the performance impact of using them. It will mainly analyze Texas Instruments’

TMS320C6211, which uses a two-level caching scheme for both instruction and data.

The paper will conclude with my findings on cache utilization of the TMS320C6211 by

evaluating several commonly used DSP kernels on a commercially available simulator.

3

INTRODUCTION

More and more consumer products and cost-sensitive systems are incorporating

DSPs into their designs. The demand for products with signal processing capabilities is

influencing the design goals of some DSPs. Traditionally, there was a fine distinction

that set apart DSPs from GPPs; but now, as DSPs are getting more sophisticated, the

distinction is becoming more ambiguous. One area that used to set apart DSPs from

GPPs was the use of caches. GPPs routinely implemented caches into their designs, but

DSPs have traditionally lacked caches, especially data caches. As processor cycle times

continue to fall, more proportion of the peak processing power is being lost to the

memory system. Caches offer a simple and effective way to combat the latency of

accessing instructions and data [1].

MEMORY ARCHITECTURES

Typical DSP operations require high memory bandwidth because they are data-

intensive. To satisfy the high throughput requirements, DSPs usually implement the

Harvard architecture as opposed to the Von Neumann architecture. GPPs have

traditionally used the Von Neumann memory architecture (Figure 1a), which connects

one memory space to the processor core by one bus set—an address bus and a data bus.

The memory bandwidth was sufficient to sustain many GPP applications with plenty of

instructions and data. However, the memory bandwidth requirements of DSPs make the

Von Neumann architecture a poor choice. Thus, most DSPs implement a Harvard

memory architecture (Figure 1b).

The Harvard memory architecture uses two memory spaces, usually partitioned as

program memory and data memory. The two memory spaces are connected to the

4

processor core by two bus sets, allowing for two simultaneous accesses to memory. This,

in effect, doubles the processor’s memory bandwidth; and thus, keeps the processor core

well fed with large amounts of instructions and data [2]. Modern high-performance GPPs

such as the Pentium and PowerPC also implement a similar Harvard architecture to make

multiple memory accesses per instruction cycle for superscalar execution and for high

data demands [3].

Figure 1: Memory architectures. (a) von Neuman (b) Harvard [3]

GPP AND DSP CACHE NEEDS

Most high-performance GPPs typically contain two on-chip caches—one for data

and one for instructions. The performance requirements of GPPs make quick memory

accesses an essential criteria in order to meet their design goals, but the high performance

nature of these chips often makes it impossible to integrate memory chips capable of

keeping pace with the processors. Therefore, caches provide a viable way of sustaining

5

data demands as well as allowing for data retrieval at full processor speed without

accessing slow, off-chip memory. The importance of quick memory access can be seen

by IBM’s highly anticipated Power4 chip, which is allocating 60 percent of the transistors

to cache memory [4].

Unlike GPPs, most DSP processors do not have any cache. Instead, they rely on

multiple banks of on-chip memory and multiple bus sets to allow for several on-chip

memory accesses per instruction cycle. However, some DSPs do incorporate a small,

specialized instruction cache that is used for storing instructions used in small loops so

that the on-chip bus sets can be free to retrieve data words. DSP processors almost never

include a data cache because the data is typically “streaming.” In other words, data

samples are often used by the DSP processors to perform computations and then are

discarded with little need for reuse [3].

The traditional DSP design has changed with the introduction of Texas

Instruments’ TMS320C6211, which not only includes instruction and data caches, but

also implements them in two-levels. At 150 MHz, it is capable of performing 1200 RISC

MIPS, with up to eight instructions per cycle. It has 72 KB of on-chip RAM—4 KB of

L1 program cache, 4 KB of L1 data cache, and 64 KB of L2 unified cache [4]. The

C6211 is expected to be used for price sensitive applications, such as digital subscriber

loop (DSL) clients for small offices or the home as well as high-speed data transmission

functions in switches and routers, wireless data clients, imaging, biometrics, remote

medial diagnostics, automotive vehicle and drive train control, and security systems [6].

6

TMS320C6211

The TMS320C6211 utilizes a two-level memory architecture for on-chip program

and data accesses (Figure 2). The first level consists of 4 KB of direct-mapped program

cache and 4 KB of 2-way set associative data cache. Separate and dedicated L1 caches

prevent conflicts that may arise due to fights for memory resources between the program

and data busses. A direct map is well suited for the L1P since DSP algorithms consist of

small, tight loops. Set associativity is more appropriate for the L1D because data tends to

be more random and have more strides than program instructions [8]. Also, the L1D uses

a least-recently-used (LRU) replacement scheme, which produces cache allocations that

are very close to optimal [9]. The second level is made up of 64 KB that can be used by

both the program and data. It can be used entirely as a cache, be directly mapped as

internal memory, or be used as a combination of these functions. It is divided into four

16 KB banks, each of which can be programmed as cache or RAM space. With the

flexibility allowed by the L2, the user can optimally partition the cache with a balance of

RAM, program cache, and data cache [7].

Figure 2: TMS320C6211 Digital Signal Processor [7]

7

IMPLEMENTATION

Objective

The objective of my study was to substantiate the performance gain realizable by

having a cache or caches on a DSP. My approach was to execute several common DSP

kernels on an actual DSP with caches to examine its cache utilization to see whether there

were true benefits. I chose Texas Instruments’ TMS320C6211 for my study because it

exploited many features of caching such as using both instruction and data caches, set

associativity, and two levels. Also, by using TMS320C6211, I was able to compare my

results with Texas Instruments’ findings.

My first task was to obtain a tool to conduct my investigation. From Texas

Instruments’ web site, I was able to download a 30-day free trial version of a

commercially available tool, Code Composer Studio. This tool provided a

TMS320C6211 simulator that modeled the cache performance of the device. It was able

to monitor cache activities and report pertinent information such as cache hits and misses

for instructions and data on both levels of caches. I was also able to use several common

DSP kernels that came with the tool to perform the evaluation.

Texas Instruments’ Findings

Texas Instruments (TI) found that the high L1 hit rate, coupled with the flexible

L2 memory organization, allows for a high rate of performance. TI claims that typical

applications can operate at more than 80% of the optimal cycle performance [7]. Optimal

performance means that the processor has infinite internal program and data memory. TI

says that 98% of program fetches hit in the L1P and 91% of data fetches hit in the L1D.

With the L2 in the 4-way set associative mode, there is normally a hit 96% of the time

8

when the L2 is accessed. Overall, more than 99.5% of all CPU cycles execute without

going out to external memory [8]. Figure 3 shows the performance efficiency observable

on the TMS320C6211 by some DSP applications.

Figure 3: TMS320C6211 Benchmark Performance [8]

My findings

For my study, I ran several common DSP kernels through the TMS320C6211

simulator and observed the cache utilization. Since one of the most important measure of

cache-design effectiveness is the miss ratio, that is what I focused on. The miss ratio is

the fraction of the total processor references that are not found in the cache. A low miss

ratio (or a high hit ratio) would indicate that the cache is effective since the processor

does not have to wait for slower main memory references as often [10]. I was able to

examine the L1P and L1D hits and misses, but I was unable to monitor the L2 cache

performance. Although the L2 is configurable to 1-, 2-, 3-, or 4-way set associative

cache or as a RAM space, I was unable to figure out how to modify the L2 configuration

from its default setting as a RAM space. One thing to note, however, is that all the

9

references that missed in the L1 were found in the L2 RAM space. Table 1 summarizes

the results of my investigation.

DSP Kernels L1P Hit Ratio L1D Read
Hit Ratio

L1D Write
Hit Ratio

IIR filter 92493/92517
(99.97%)

891/918
(97.06%)

356/371
(95.96%)

Vector Multiply 225696/225717
(99.99%)

1042/1066
(97.75%)

304/318
(95.60%)

MAC 171135/171158
(99.99%)

1350/1374
(98.25%)

460/475
(96.84%)

FFT 52366/52402
(99.93%)

118408/118805
(99.67%)

69894/69923
(99.96%)

Telecom 240145/240171
(99.99%)

328/338
(97.04%)

153/176
(86.93%)

 Kernel descriptions
 IIR filter—typical Infinite Impulse Response biquad filter
 Vector Multiply—a scalar vector multiply followed by a right shift
 MAC—Multiply Accumulate function
 FFT—complex radix 4 Fast Fourier Transform
 Telecom—implements one stage of Viterbi V32 trellis decoder

Table 1: Summary of Cache Performance

CONCLUSION

As bus speeds continue to increase and the nature of applications changes, the

need for caching is becoming more apparent. The analysis of Texas Instruments’

TMS320C6211 clearly show the benefits of incorporating a cache structure into the DSP

design. My investigation shows a strong correlation to Texas Instruments’ findings—

mainly, that most program and data accesses hit in the L1. With an L2, the off-chip

memory latency penalty can be further reduced. As DSP applications continue to grow,

using caches may become the norm instead of being a rarity.

10

REFERENCES

[1] N. P. Jouppi and S. J. E. Wilton, “Tradeoffs in Two-Level On-Chip Caching,”
 21st Annual Int. Symp. on Computer Architecture, April 18-21, 1994, pp. 34-45.

[2] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor
 Fundamentals, IEEE Press, ISBN 0-7803-3405-1, 1997.

[3] J. Eyre and J. Bier, “DSP Processors Hit the Mainstream,”
 http://www.bdti.com/articles/final.pdf.

[4] J. Markoff, “IBM To Introduce New Computer Processors,” New York Times,
 October 5, 1999.

[5] “TMS320C6211,”
 http://www.horizon-tech.fr/products/hunt/tms320c6000/tms320c6211.htm.

[6] “TI DSP Will Run at 2,000 MIPS With Lots of Cache,”
 http://edtn.com/news/sept9/090998pnews1.html.

[7] Texas Instruments, “How To Begin Development Today With the TMS320C6211
 DSP,” Application Report SPRA474,
 http://www.ti.com/sc/psheets/spra474/spra474.html

[8] Texas Instruments, “TMSC320C6211 Cache Analysis,” Application Report
 SPRA472, http://www.ti.com/sc/psheets/spra472/spra472.html

[9] H. S. Stone, J. Turek, and J. L. Wolf, “Optimal Partitioning of Cache Memory,”
 IEEE Transactions on Computers, vol. 41, no. 9, pp. 1054-1068, Sept. 1992.

[10] D. A. Alpert and M. J. Flynn, “Performance Trade-offs for Microprocessor
 Cache Memories,” IEEE Micro, vol. 84, pp. 44-54, Aug. 1988.

