
A Study on Process Networks

by

Basu Vaidyanathan

Term Project

Embedded Software Systems

(EE382C)

The University of Texas at Austin

October 1999



1

ABSTRACT

Algorithms for digital signal processing are often described by directed

graphs in which the nodes represent the computational units, which are

interconnected by arcs that represent sequences of data values. This kind of

formal modeling helps to resolve the hard to find problems like, deadlock and

determinate execution. A process network model is one model of computation

where concurrent processes interact through one-way first-in first-out (FIFO)

queues. This is a natural model for signal processing systems that deal with

infinite streams of data values, to realize concurrent processing of functional

parallelism. Though true real-time measurements are difficult in the simulation of

digital signal processing applications, process networks computation model helps

develop a prototype on workstations that significantly reduces cost and

development time over an equivalent hardware implementation. A real-time sonar

beamformer[4] has been successfully simulated in software using process network

model on multi-processor Unix workstations interfacing with POSIX light-weight

threads library. Ptolemy is another simulation and prototyping environment that

uses process network model. In this study, we investigate the definition of process

network model and its various restricted versions in detail.



1

PROCESS NETWORKS

A process network can be thought of as a set of Turing machines

connected by a unidirectional tapes, where each machine has its own working

tape. It is well known that there is no algorithm that runs in finite time that can

determine whether a turing machine will halt or not. Unlike scientific

applications, signal processing applications that well fit into process network

model, execute forever consuming infinite amount of data samples. Hence the

question whether a process network will run forever or terminate because of a bad

scheduling decision, is undecidable since halting problem is undecidable. Even

the question of executing process network forever with bounded buffering on

FIFO queues is undecidable..

KAHN PROCESS NETWORKS

Kahn process networks is a computation model where each process

produce data elements called tokens on FIFO queues of infinite length. These

tokens are consumed by a waiting destination process. In this model, the

execution of the process is suspended if it attempts to consume data from an

empty queue. A process may not test for presence or absence of data. At any

point, a process is either enabled or blocked waiting for data. A process cannot

wait for data from one queue or another.

We list some basic definitions before we present various restricted

computation models of process networks.



2

Execution Order

The execution order is the order of read and write operations in a process

network which can either be sequential or concurrent. In general, there will be

many execution orders possible that clearly satisfy the restrictions imposed by the

processes and the communication layer. The FIFO semantics and write-before-

read are some restrictions that are known before execution where some others

imposed by processes are not known.

Termination

Termination is completely determined by the definition of the process

network and does not depend on the execution order. For a process network

program that has finite number of tokens on all the queues, the program must

terminate. If at-least one process produces infinite amount of tokens on any

queue, then the program never terminates.

Boundedness

Depending on the choice of the execution order, the number of

unconsumed tokens on the FIFO queue can accumulate for a process network

program running forever. A process network is strictly bounded if the number of

unconsumed tokens on every FIFO queue is bounded for any complete execution

of the program. A process network is bounded if the number of unconsumed

tokens on every FIFO queue is bounded for at-least one complete execution of the

program.

In Kahn process network, the order in which tokens are produced on the

FIFO queues do not depend on the execution order. Systems that follow Kahn's



3

model are determinate. This allows a process network program to be executed

sequentially or concurrently with the same outcome.

RESTRICTED MODELS OF PROCESS NETWORKS

Dataflow is a model of computation that has close correspondence to

process networks. The arcs of the graph in dataflow model correspond to FIFO

queues and the nodes correspond to actors. Instead of using Kahn's model of

blocking read semantics, dataflow actors have firing rules that specify what

tokens must be available on arcs for the actor to fire. A process can be formed

from a repeated firings of a dataflow actor so that infinite stream of tokens can be

operated on.

Computation graphs[2] are a model of parallel computation similar to

process networks developed by Karp and Miller. This determinate model is

represented by directed graph containing finite set of nodes and arcs. The model

defines four non-negative integers A, U, W and T associated with each arc: A is

the number of data tokens initially present on the arc, U is the number of data

tokens produced on the arc on each firing, W is the number of data tokens

consumed from the arc on each firing, and T is the threshold minimum number of

data tokens that must be present on the arc before the consumer actor is fired,

where T is greater than or equal to W. Providing an upper bound T on the number

of tokens on an arc, before a consumer can fire, determine the possible execution

sequences. Due to the restrictions placed on the computation model, Karp and

Miller are able to give necessary and sufficient conditions to decide on the

questions of termination and boundedness for this model.



4

Synchronous Dataflow[1] is a special case of computation graphs where T

is equal to W for all arcs in the graph. Because the number for tokens consumed

and produced by an actor is constant for each firing, constructing a static finite

schedule that can then be periodically repeated is possible for infinite stream of

input data tokens. A balance equation for a synchronous dataflow program is a

finite firings of all the actors (without considering initial tokens on the arcs) for

which the net production and consumption of tokens are equal. A complete cycle

is a sequence of actor firings that returns the program to its original state and the

accumulation of tokens on any queue is bounded in a complete cycle. So, it is

now possible to repeat the execution of the complete cycle indefinitely with only

a bounded number of unconsumed data tokens accumulated on the arcs.

Depending on the number of initial tokens on each arc, even if we have a balance

equations, tokens may accumulate indefinitely if the program is executed forever.

It is also possible for the program to deadlock even if we have a balance

equations, but not having enough initial tokens on the arcs in the directed cycle.

So, the existence of a complete cycle allows a program to execute forever with

bounded buffer sizes. The balance equations specify the number of actor firings in

a complete cycle. Finding a non-trivial solution to balance equations is necessary

but not sufficient for a complete cycle to exist and we need initial tokens on the

arcs to determine the existence of a complete cycle. The existence of a complete

cycle is only a sufficient condition to determine if the program has a deadlock

situation.



5

Boolean Dataflow is an extension of synchronous dataflow that allows

conditional token consumption and production. By adding two simple control

actors called switch and select (de-multiplexer and multiplexer) the boolean

dataflow program can add conditional constructs such as if-then-else and do-while

loops. Copying of data token from appropriate input to the appropriate output arc

is controlled by the boolean value of the control token read by the switch or select

control actor. As in synchronous dataflow, find a solution to balance equation is

necessary but not sufficient to determine the existence of a complete cycle.

Because the boolean values of the control token can only be determined at run-

time, it is impossible to decide on the questions of termination and boundedness

of a boolean dataflow program. However, a quasi-static scheduling is possible by

clustering the nodes of a boolean dataflow graph and transforming it to a

synchronous dataflow graph.

Dynamic Dataflow model is an extension of Boolean data flow model that

obeys boolean dataflow semantics with one additional variation. The control

actors can read multiple token values and the data actors can be fired

conditionally based on the control token values read. So, dynamic scheduling is a

must for this model that determines firing of actors at run-time. A dynamic

scheduler for process networks must satisfy two requirements:

Complete Execution: If the program based on Kahn's model is non-terminating,

then it should be executed forever without terminating.

Bounded Execution: If possible, the schedule must execute a program so that

only a bounded number of tokens ever accumulate on any of the FIFO queues.



6

When there is a conflict, the first requirement is always preferred. This means that

for unbounded programs that require unbounded buffering or tokens, complete

unbounded execution is preferred to a partial unbounded execution.

Dynamic scheduling can be classified as data-driven(eager execution),

demand-driver(lazy execution) or some combination of the two. An eager

execution is one where a process is activated as soon as enough data is available

which satisfies the first requirement and therefore this policy results in complete

execution. For strictly bounded programs, the eager execution scheduling always

performs complete execution with bounded memory. For bounded programs and

unbounded programs, the second requirement is violated and so complete

unbounded execution is preferred. A lazy execution model developed by Kahn

and MacQueen, is one where a process is activated only if the consumer process

does not already has sufficient tokens available on the queue. Thus in this model,

unnecessary production of tokens is avoided. Also, there is never more than one

active process at any time. Unbounded token accumulation is still possible in this

model due to the presence of multiple data sinks. For example, if an unequal

number of demands arrive for the branches of a fork, then tokens will accumulate

at the input of one of the gate operators.

BOUNDED SCHEDULING OF PROCESS NETWORKS

Termination and boundedness are undecidable for process network

programs. The process network programs can be classified as terminating, non-

terminating, strictly bounded, bounded and unbounded programs. A scheduling

policy must have a reasonable behavior for all types of programs. Thomas Parks



7

devised a scheduling policy[3] that simultaneously satisfies both requirements of

a dynamic scheduler and provides a desired behavior for all types of programs.

The model he proposed for bounded scheduling of process networks has three

properties: a) a process is suspended when attempting to read from an empty

queue. b) a process is suspended when attempting to write to a full queue and c)

on artificial deadlock, increase the capacity of the smallest full queue until its

producer can fire. Only the read and write operations of Khan process networks

program have to be modified to satisfy all the properties mentioned above.

If a program is bounded, then there exists a finite least upper bound and an

execution order such that the size of each queue size never exceeds that upper

bound. We start the program with an initial estimate on the queue size less than

upper bound, such that the program is strictly bounded by the initial bound. We

then execute the program satisfying the first requirement using some dynamic

scheduling policy. There can be two outcomes: a) the execution of the program

stops if and only all the processes are suspended reading from empty queues

resulting in a true deadlock. b) the execution may also stop because some

processes are suspended attempting to write to full queues resulting in an artificial

deadlock. If it is true deadlock situation, then the program has terminated. If it is

artificial deadlock situation, then we increase the initial bound to a new bound

less than the upper bound, and continue execution. This is repeated for a steady

forward progress of the process network program. If the program is bounded, the

new bound will exceed the upper bound and we will be able to execute the

program forever with bounded queue length, satisfying both requirements



8

simultaneously. If the program is unbounded, execution repeatedly stops due to

artificial deadlock, and we increase the queue size repeatedly without limit. This

is the case where we prefer the first requirement to be satisfied and avoid having

partial bounded execution.

FUTURE WORK

The objective of future work is to realize an implementation of dynamic

artificial deadlock detection and correction in T. Parks's bounded scheduling of

process networks model. The detection and correction of artificial deadlock will

be an enhancement to the existing C++ implementation of process networks

framework that interfaces with pthread library and runs on SUN Solaris OS. This

existing code was developed by Greg Allen of ARL at the University of Texas at

Austin.

REFERENCES

[1] Shuvra S. Bhattacharyya, Praveen. K. Murthy, Edward A. Lee, Software Synthesis from

Dataflow Graphs, Kluwer Academic Publications, ISBN 0-7923-9722-3, 1996.

[2] R. M. Karp and R. E. Miller, "Properties of a Model for Parallel Computations: Determinacy,

Termination, Queueing," SIAM Journal of Applied Math, vol. 14, No. 6, November, 1966.

[3] T. M. Parks, "Bounded Scheduling of Process Networks," Technical Report UCB/ERL-95-

105. PhD Dissertation. EECS Department, University of California, Berkeley, CA 94720,

December 1995.

[4] G. Allen, B. Evans, and D. Schanbacher, "Real-time Sonar Beamforming on a Unix

Workstation Using Process Networks and POSIX Threads," Proceedings of the 32nd Asilomar

Conference on Signals, Systems & Computers, pp. 1725-1729, November, 1998.


