
Artificial Deadlock Detection and Correction in
Bounded Scheduling of Process Networks

by

Basu Vaidyanathan

Term Project

Embedded Software Systems

(EE382C)

The University of Texas at Austin

December 1999

1

ABSTRACT

Parks devised a scheduling policy for process networks that

simultaneously satisfies both complete execution and bounded memory execution

requirements of any dynamic scheduler. This paper presents an implementation of

dynamic artificial deadlock detection and correction in Parks bounded scheduling

of process networks. The presence of artificial deadlock when atleast one process

is suspended attempting to write to a full queue, is detected before it actually

happens and is resolved so that there is a steady progress in the execution of

process networks program with bounded memory whenever possible. This paper

describes a way to completely eliminate artificial deadlock thereby speeding up

the program execution with bounded memory.

1

INTRODUCTION

A process network model is a model of computation in which concurrent

processes interact through one-way first-in first-out (FIFO) queues. A process

network is a natural model for signal processing systems that deal with infinite

streams of data values, to realize concurrent processing of functional parallelism.

Ptolemy is a simulation and prototyping environment that uses process network

model.

Though true real-time measurements are difficult in the simulation of

digital signal processing applications, process networks computation model helps

develop a prototype on workstations that significantly reduces cost and

development time over an equivalent hardware implementation. A real-time sonar

beamformer [2] has been successfully simulated in software using process

network model on multi-processor Unix workstations interfacing with POSIX

lightweight threads library. Currently, this implementation does not handle

artificial deadlock; it rather circumvents it by choosing a fairly large queue size.

Our implementation addresses this problem and attempts to detect

artificial deadlock before it happens and corrects it so the process networks

program could make steady forward process with bounded memory whenever

possible. It is not very difficult to realize this implementation enhancement,

however, it is quite involved due to the complex behavior of process networks

program.

2

BACKGROUND ON PROCESS NETWORKS AND BOUNDED SCHEDULING

Kahn process networks is a computation model in which each process

produce data elements called tokens on FIFO queues of infinite length. In this

model, the execution of the process is suspended if it attempts to consume data

from an empty queue. A process may not test for presence or absence of data [3].

At any point, a process is either enabled or blocked waiting for data. A process

cannot wait for data from one queue or another. In Kahn process network, the

order in which tokens are produced on the FIFO queues do not depend on the

execution order. Systems that follow Kahn's model are determinate. Termination

is completely determined by the definition of the process network and does not

depend on the execution order.

Computation graphs are a model defined by Karp and Miller, places a

restriction on the model that a threshold minimum number of data tokens must be

present on the arc before the consumer is fired, which is greater than or equal to

the number of tokens consumed. Termination and boundedness are undecidable

for process network programs. Any dynamic scheduler for process networks must

satisfy two requirements: 1) if a process network program is non-terminating, it

must execute forever without terminating, and 2) if possible, the schedule must

execute a program so that only a bounded number of tokens ever accumulate on

any of the FIFO queues. Parks [1] devised a scheduling policy that simultaneously

satisfies both requirements of a dynamic scheduler and provides a desired

behavior for all types of programs. The model he proposed for bounded

scheduling of process networks has three properties: a) a process is suspended

3

when attempting to read from an empty queue, b) a process is suspended when

attempting to write to a full queue, and c) on artificial deadlock, increase the

capacity of the smallest full queue until its producer can fire. Only the read and

write operations of Khan process networks program have to be modified to satisfy

all the properties mentioned above.

We start the program with an initial estimate on the queue size less than

upper bound, such that the program is strictly bounded by the initial bound. We

then execute the program satisfying the first requirement using some dynamic

scheduling policy. There can be two outcomes: a) the execution of the program

stops if and only all the processes are suspended reading from empty queues

resulting in a true deadlock, or b) the execution may also stop because some

processes are suspended attempting to write to full queues resulting in an artificial

deadlock. If it is true deadlock situation, then the program has terminated. If it is

artificial deadlock situation, then we increase the initial bound to a new bound

less than the upper bound, and continue execution. This is repeated for a steady

forward progress of the process network program. If the program is unbounded,

execution repeatedly stops due to artificial deadlock, and we increase the queue

size repeatedly without limit. This is the case where we prefer the first

requirement to be satisfied and avoid having partial bounded execution.

PRIOR WORK

Computationally intensive sonar beamforming algorithms have been

implemented [2] using Process Networks and POSIX Pthreads under Sun Solaris

operating system by Greg Allen of ARL at the University of Texas at Austin. This

4

implementation has been proven to compare favorably with the more traditional

thread-pool model, and provides a low-overhead, high-performance, scalable

framework. Although the above-mentioned implementation is applied to

beamforming, it provides a basic process networks implementation framework [4]

that could be used on any appropriate processing task. It uses C++ inheritance

mechanism to build interfaces and functionality.

In this implementation, each node of a process networks program

corresponds to a POSIX thread and these multiple threads can run concurrently on

multiple processors. The computation time of a node is made reasonably larger

than the context switch time of a thread. The queues that connect the process

nodes are intended to make up for the lack of circular address buffers in general

purpose processors, and to prevent unnecessary copying of data. The circular

addressing is achieved by mirroring the beginning of the queue’s data region(up to

some threshold) just past the end of the queue’s data region. Thus, queue can

provide a pointer to a contiguous block of data elements even when operating near

the end of the data region. The queue manages this mirroring, and guarantees that

the same data resides in both locations.

This implementation combines the input firing threshold imposed by

Computation graph with output firing threshold imposed by Parks bounded

scheduling policy. The input and output queue thresholds are dynamic and could

be different for different queues and for each transaction on the queues. Similarly,

the number of tokens produced and consumed by a node is also dynamic. The

5

detection of artificial deadlock is necessary only for unbounded programs to

execute forever in bounded memory and these programs have no place real-time.

The POSIX condition variable is used to awaken nodes at the proper time.

When the producer enqueues data into a queue and there is a suspended consumer

waiting at the other end, consumer will be signaled to awaken if the operation

provides enough data for the consumer to fire. A similar signaling is done from

consumer to producer on dequeueing data.

A general programming model for the applications that is layered on the

top of this process networks implementation is as follows:

forever do

 get readpointer to a specified block of data to be dequeued

 { blocks until threshold amount of data is available }

 get writepointer to a specified block of data to be enqueued

 { blocks until threshold amount of space is available }

 copy data contents from readpointer to writepointer

 update queue indices based on number of data elements dequeued

 { awaken waiting producer, if enough space available }

 update queue indices based on number of data elements enqueued

 { awaken waiting consumer, if enough data available }

done

OBJECTIVES

The main objective of this work is to thoroughly understand the existing

bounded memory process networks implementation [2] developed in C++, using

6

portable Pthread library, and modify the code to handle artificial deadlock. The

goal is to modify the existing code without impairing the layered queue

implementation approach that is used and to keep it still portable across different

platforms. Another goal is to find similar work on the detection and correction of

artificial deadlock in bounded scheduling of process networks. However, we

could not find related work published in any of the journals as the work on

bounded scheduling of process networks is fairly recent.

OTHER RELATED WORK

The process networks domain in Ptolemy II [5] models a system as a

network of sequential processes, implemented as Java threads, that communicate

using one-way FIFO queues. It implements Parks bounded scheduling and

handles detection of artificial deadlock. However, it employs a separate Java

thread that handles the deadlocks and resolves them as soon as they arise

according to Parks scheduling policies. It differs from our implementation in that

every time any thread is suspended on a read or a write, this dedicated Java thread

checks for artificial deadlock.

DESIGN AND IMPLEMENTATION

In our design, each queue in the network will have its own size which is

fixed at creation time. The user specifies a current queue size and a maximum

queue size at the creation time. We allocate queue for maximum size, but manage

the queue only with current queue size specified by the user. If one or more

threads are blocked writing to a full queue and others blocked reading from an

empty queue, we encounter artificial deadlock. Expanding the queue every time

7

we encounter artificial deadlock is performed by updating the current queue size

by a fixed number, adjusting the data elements and performing mirroring of data

elements to be consistent with the updated current queue size.

Most of the design changes have been incorporated only in queue

management at the process networks layer. In this layer, we maintain a list of

qEntry classes each containing a queue identifier, queue size and block-type (read

or write), sorted by queue size, for all the queues that are created in the network.

This list is shared by all the threads in the network. We also maintain some more

shared memory information, namely, the number of the threads suspended on

read, number of threads suspended on write and the total number of queues at any

point in time. All these shared memory information is properly serialized by a

Qmutex lock for access by all the threads in order to maintain data consistency.

The last thread in the network that decides to get suspended (either on read or

write) awakens all the threads that are suspended on writing to a full queue. Each

awakened thread traverses the qEntry list to find if its queue size is the smallest.

The thread that has the smallest queue size expands its output queue and attempts

to write again. All other awakened threads go back to their suspended state. The

thread that detected the artificial deadlock now gets suspended unless it finds

itself to be candidate to expand its queue. In both cases, we have either the current

thread or the awakened thread running in the system letting the program make

forward progress. Thus, we completely eliminated the artificial deadlock situation.

8

ISSUES AND POSSIBLE ENHANCEMENTS

In order to expand the queue, reallocating the queue every time we

encounter artificial deadlock is an option. This is an expensive operation. This

might also pose another problem for an application that already has the address of

the old queue will fault on further operations on it, once we change to new queue.

Our framework must also take care not to acquire locks in the wrong order (lock

hierarchy violation) when accessing shared memory variables, as it would

deadlock.

We could have a dedicated thread that handles artificial deadlock. Another

improvement could be that the last thread that is getting suspended could directly

signal the thread that has minimum queue size and waiting on write. Searching the

qEntry list could be improved.

REFERENCES

[1] T. M. Parks, "Bounded Scheduling of Process Networks," Technical Report UCB/ERL-95-

105. EECS Department, University of California, Berkeley, CA 94720, December 1995.

[2] G. Allen, B. Evans, and D. Schanbacher, "Real-time Sonar Beamforming on a Unix

Workstation Using Process Networks and POSIX Threads," Proc. IEEE Asilomar Conference on

Signals, Systems & Computers, pp. 1725-1729, November, 1998.

[3] G. Kahn and D. B. MacQueen, “Coroutines and Networks of Parallel Processes,” Information

Processing, pages 993-998, Toronto, August 1977.

[4] Process Networks Source code Web Page: http://www.ece.utexas.edu/~allen/PNSourceCode/

[5] Ptolemy II Web Page: http://www.ptolemy.eecs.berkeley.edu/ptolemyII/

