
Artificial Deadlock Detection and Correction
in

Bounded Schedulin g of Process Networks

by
Basu Vaid yanathan
EE382C - Embedded Software S ystems
Fall 1999

Goals

z Understand the bounded schedulin g
of process networks

z Develop an al gorithm and implement
to detect the artificial deadlock and to
resolve it to continue the pro gram

z Understand the existin g basic PN
framework implementation

z Modify the code to keep it modular
and transparent to applications

Process Networks

z A networked set of Turin g machines
z Models functional parallelism and

simulation possible on SMP
hardware

z Well-suited for si gnal processin g
systems that deal with infinite
streams of data

z Termination and Boundedness are
undecidable.

Process Networks

z Kahn process networks model:
– has finite set of processes and FIFO queues

– execution of a process suspended on read
from an empty queue

– a process cannot wait for data from one queue
or another

– a process may not test for presence or
absence of data

– Systems that follow Kahn’s model are
determinate

Process Networks

z Karp and Miller Computation Graph:
– requires a threshold number of tokens on the

arc before the consumer can fire

z Number of tokens produced/consumed is
known only at runtime

z Dynamic schedulin g is needed. It requires:
– 1. Non-terminatin g pro grams must execute

forever

– 2. If possible, tokens accumulation on any of
the FIFO queues must be bounded

Process Networks

z Parks Schedulin g policy has three rules:
– 1. Process suspended when readin g an empty

queue

– 2. Process suspended when writin g to a full
queue

– 3. On artificial deadlock, increase the smallest
full queue size until a producer can fire.

z Realizes pro gram execution forever with
bounded memory whenever possible.

Process Networks

z Artificial Deadlock
– Occurs when atleast one process is

suspended on write to a full queue

z True Deadlock
– If all the processes are suspended on read

then the pro gram has terminated

Basic Process Networks
Framework
z Implementation details:

– Developed by Gre g Allen of ARL at UT

– Implemented in C++, combined with POSIX
Pthread library for portability

– Threshold and PNThreshold queue layers

– Each node as a pthread

– FIFO queues have input and output firin g
thresholds

– Threshold amount of queue data mirrored to
provide address/data continuity

Basic Process Networks
Framework

– Node computation time greater than thread
context switch time

– POSIX condition variable used to awaken
consumer once data is available and to
awaken producer once space is available

– Applied in Sonar Beamforming, a real-time
problem where deadlock detection is not
needed

– provides a programming model for
applications

My Design and Implementation
z Details:

– Variable queue size for each FIFO queue

– Maintain a list of qEntry class sorted by queue
size. qEntry has Queue id, iswriteblocked
stored in shared memory

– Last thread in the network before suspendin g
itself awakens all threads suspended on write

– Only the thread with smallest queue size
expands its queue size and continues and rest
of the awakened threads suspended a gain.

– Never gets into artificial deadlock situation

– deadlock detection handled in PN queue layer

Issues and Improvements

z When expandin g the queue reallocation of
queue buffer is not possible

z Our PN implementation must not
introduce additional deadlock violatin g
lockin g hierarchy

z Use of a dedicated thread to handle
deadlock

z Last thread can avoid awakenin g all
threads suspended on write

z Searchin g qEntry list can be improved

Any Questions?

