
March 13, 2000 1

FILTER SYNTHESIS USING FINE-GRAIN DATA-FLOW GRAPHS

Waqas Akram, Cirrus Logic Inc., Austin, Texas

Abstract: this pr oject is concerned with finding ways to synthesize hardware-efficient

digital filter algorithms gi ven technology and data-rate constraints. The synthesis

flow targets embedded systems implemented in application specific integrated cir-

cuits (ASICs). The flexibility inherent in such custom implementations provides

opportunities for optimization down to the bit-level. This effort attempts to construct

a convenient framework for the architectural manipulation of filter algorithms at the

bit-level, in order to reduce hardware complexity while meeting fixed data-rate con-

straints. The ultimate goal here is to take an applicative language description of an

algorithm and transform it into the most hardware-efficient descriptive language

representation at the bit-level.

1.0 INTRODUCTION

In order to maintain compatibility with products from a wide range of vendors, most

widely deployed systems adhere to openly available standards which normally dictate

parameters such as data-rates and packet lengths. The key challenge here is to create a

design that meets the specifications of such standards, while providing the most cost-

effective solution possible. Rapidly changing standards have created a strong desire for

system re-configurability, making programmable Digital Signal Processors (DSPs) an

attractive implementation choice. Consequently, most efforts to expose and exploit the

parallelism and concurrency in signal processing algorithms have focused on taking

advantage of multiple execution units (inter-DSP as well as intra-DSP). These efforts have

traditionally been applied at the operation-level, instruction-level, as well as basic execu-

tion unit -level.

March 13, 2000 2

The motivation for this project stems from the fact that application-specific hardware

implementations are still more attractive for low-power/low-memory/low-cost embedded

applications (like portable devices), as well as high data-rate communication systems.

The techniques already developed for exploiting parallelism and concurrency at the

instruction level can be used equally effectively at the bit-level. The use of dataflow graphs

for representing DSP algorithms has found much success with researchers, due to the

manipulative convenience and the inherently intuitive ties with the flow of data through

such systems. Consequently, most commonly used transformations have been applied on

some form of dataflow graph or another. In order to extend these techniques to bit-level

manipulation, some modifications need to be made to existing dataflow models of compu-

tation.

FIGURE 1. Dataflow representation of a simple recursive filter

2.0 REVIEW

Digital filters can be modeled as iterative homogeneous synchronous dataflow (SDF)

graphs. Certain classes of digital filters, such as recursive and adaptive filters, contain

feedback loops which impose a lower bound on the iteration period. An example dataflow

graph representation of a simple recursive filter is shown in Figure 1.

March 13, 2000 3

The problem of finding the maximum sampling rate of recursive algorithms is consid-

ered in [1] by introducing the concept of a loop iteration bound for such systems. The iter-

ation bound is tied with a particular dataflow graph description. The iteration bound of a

loop is defined as the total computation time for the loop, divided by the number of delay

elements in that loop. The iteration bound of a dataflow graph is the highest loop bound

present in that graph.

Retiming [2] is a technique for reducing the critical path delay of a dataflow graph.

The critical path in a dataflow graph has the longest computation time among all paths that

contain zero delays. Bottlenecks are eliminated by redistributing the critical path delay

across other paths, thereby reducing the sample period, enabling a higher data-rate. Retim-

ing is performed by relocating delay elements around the graph without changing the

input/output functionality of the system. Both the number of delays in the graph and the

iteration bound remain unchanged after retiming. An example of retiming a simple recur-

sive filter is shown in Figure 2. The numbers in brackets next to the nodes represent com-

putation delays associated with those nodes. The initial dataflow graph has an iteration

bound of 2, and a critical path of 4 time units. After retiming, the critical path has attained

the iteration bound of 2.

FIGURE 2. Retiming Example

March 13, 2000 4

Under certain conditions, retiming can also be used to reduce hardware complexity

and power consumption. This can be done by moving delays from multiple paths to single

paths (for example, moving a delay element from each input path of an adder to its output

path). At the word-level, this represents a lower delay element cost, but at the bit-level, the

cost at the output may be greater depending on the bit-width of the binary result word.

Various ways in which dataflow graphs can be transformed into more parallel archi-

tectures are described in [3], including unfolding and folding. Individual iterations of an

algorithm can be represented as linear dependency graphs, and retiming can be used to

reduce the critical path. However, any parallelism present across iterations cannot be

exploited, unless we unfold the recursion (either partially or completely). Unfolding is

used to represent multiple iterations of a loop as a single iteration, while preserving the

number of delays as well as precedence constraints in the dataflow graph. Zero-delay

paths in the DFG obey intra-iteration precedence constraints and non-zero delay paths

obey inter-iteration precedence constraints.

There can be cases where the iteration bound cannot be attained without unfolding,

such as when a node in the loop needs more computation time than the iteration bound

itself. Assuming the node cannot be broken down into smaller components, retiming will

not help. Figure 3 shows such an example. In the initial dataflow graph, the multiplier

takes 3 time units to execute and the iteration bound is 2. Retiming cannot reduce the crit-

ical path below 3, which limits the throughput. If we unfold the dataflow graph by a factor

of 2, as shown on the right in Figure 2, we can attain the iteration bound of 2, even though

the critical path remains at 4 time units. Such, and other, techniques of optimum unfolding

are discussed in [4], [5], [6]. Folding is another technique for dataflow graph transforma-

March 13, 2000 5

tion, and is the reverse of unfolding, and represents the re-use of DSP hardware by time-

division multiplexing. Such transformations require careful control circuitry design [7].

FIGURE 3. Unfolding Example (ITERATION BOUND = 2)

3.0 OBJECTIVE

In the design of application-specific hardware, the trade-off between critical path

reduction and register minimization is better answered at the bit-level, instead of the word

level. A direct-form FIR filter is shown in Figure 4, where the input samples and filter

coefficients are both 8-bits wide. The critical path is 5, and 16 bit delay elements are

needed.

FIGURE 4. Direct form FIR Filter

March 13, 2000 6

Figure 5 shows the retimed (or transposed) FIR filter with a critical path of 4. This

graph requires 32 bit delay elements, due to the extra precision required at the outputs of

the computational units. Note that word-level retiming would predict equal resource

requirements for both of these architectures.

FIGURE 5. Transposed-form (retimed) FIR filter

Figure 6 shows an example of fine-grain cutset retiming, where an extra delay ele-

ment has been introduced in order to pipeline the multipliers. Note that the critical path is

now 2 time units. However, apart from the 3 new word delay elements, there is no infor-

mation on how costly this transformation is in terms of hardware complexity. Some trade-

offs in pipeline granularity at the bit-level are considered in [8].

FIGURE 6. Fine-grain cutset retiming

A slightly enhanced model of computation needs to be developed: fine-grain data-

flow might behave like homogeneous SDF, but each token needs to possess a “bit-width”

March 13, 2000 7

attribute (which would translate directly into a factor for actual delay element computa-

tion). It would be erroneous to model this as non-homogeneous SDF using “bit-width”

number of tokens on each edge, since all “bit-width” tokens exist on the edge as a single

unit. Also, a cost function needs to be maintained for each node.

FIGURE 7. Filter synthesizer architecture

Figure 7 shows a possible implementation of this system. The arithmetic unit algo-

rithm library will contain multiple fine-grain data-flow graph representations of commonly

used computational units, including multipliers, adders and multiply-accumulate units

(future implementations might include butterfly and add-compare-select units). The tech-

nology library will include cost functions for each component (delay elements and fine-

grain graph nodes). Alternatively, these could be embedded in the arithmetic unit library.

The actual synthesis would consist of the following:

• provide a set of data-rate constraints, and a coarse-grain dataflow graph of the filter

• the synthesis/optimization unit creates a fine-grain representation of this dataflow graph

• perform retiming/unfolding/folding transformations in order to meet the data-rate, and

then to reduce hardware complexity,

• convert the resulting optimized fine-grain dataflow graph into a descriptive language

representation.

March 13, 2000 8

There are three components to such an endeavor: (1) creating efficient data structures

for representing and transforming fine-grain dataflow graphs, (2) designing an efficient

transformation algorithm for convergence to an optimum solution, given constraints, and

(3) test the system on a representative set of filter algorithms.

4.0 REFERENCES

[1] M. Renfors and Y. Neuvo, “The Maximum Sampling Rate of Digital Filters Under

Hardware Speed Constraints,” IEEE Transactions on Circuits and Systems, Vol.

CAS-28, No. 3, pp. 196-202, March 1981.

[2] C. E. Leiserson, F. Rose, and J. Saxe, “Optimizing Synchronous Circuitry for

Retiming,” 3rd Caltech Conference on VLSI, pp. 87-116, March 1983.

[3] K.K. Parhi, “Algorithm Transformations for Concurrent Processors,” Proceedings of

the IEEE, Vol. 77, No. 12, pp. 1879-1895, December 1989.

[4] K.K. Parhi and D.G. Messerschmitt, “Static rate-optimal scheduling of iterative

data-flow programs via optimum unfolding,” IEEE Transactions on Computers, vol.

40, no. 2, pp. 178-195, February 1991.

[5] L.-F. Jeng and L.-G Chen, “rate-optimal DSP synthesis by pipeline and minimum

unfolding,” IEEE Transactions on VLSI Systems, vol. 2, no. 1, pp. 81-88, March

1994.

[6] L.-F. Chao and E. Sha, “Retiming and unfolding data-flow graphs,” Proceedings of

1992 International Conference on Parallel Processing, part II, pp. 33-40, August

1992.

[7] K. K. Parhi, C.-Y. Wang, and A. P. Brown, “Synthesis of Control Circuits in Folded

Pipelined DSP Architectures,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 1,

pp. 29-43, January 1992.

[8] C. Nagendra, R. M. Owens, and M. J. Irwin, “Design Trade-offs in High-Speed

Multipliers and FIR Filters,” 9th International Conference on VLSI Design, January

1996.

