FILTER SYNTHESIS USING FINE-GRAIN DATA-FLOW GRAPHS

Wagas Akram, Cirrus Logic Inc., Austin, Texas

Abstract: this project is concened with finding ways to synthesize hardare-efficient
digital filter algorithms gi ven technology and data-rate constraints. The synthesis
flow targets embedded systems implemented in application specific integrated cir-
cuits (ASICs). The flexibility inherent in such custom implementations povides
opportunities for optimization down to the bit-level. This efort attempts to construct
a corvenient framework for the architectural manipulation of filter algorithms at the
bit-level, in order to reduce hardvare complexity while meeting fixed data-rate con-
straints. The ultimate goal hee is to take an applicatve language description of an
algorithm and transform it into the most hardware-efficient descriptve language

representation at the bit-level.

1.0 INTRODUCTION

In order to maintain compatibility with products from a wide rangesatiors, most
widely deplyed systems adhere to opemiaitable standards which normally dictate
parameters such as data-rates andgidekgths. Thedy challenge here is to create a
design that meets the specifications of such standards, whildipgothe most cost-
effective solution possible. Rapidly changing standarde lcaeated a strong desire for
system re-configurabilitymaking programmable Digital Signal Processors (DSPs) an
attractve implementation choice. Consequenthost efforts to expose and>gloit the
parallelism and concurrepdn signal processing algorithmsveefocused on taking
adwantage of multiplexecution units (inteDSP as well as intra-DSP). Thestods hare
traditionally been applied at the operatiowele instruction-lgel, as well as basixecu-

tion unit -level.

March 13, 2000 1

The motvation for this project stems from thect that application-specific hardve
implementations are still more attragtifor lav-power/lov-memory/lav-cost embedded

applications (lile portable déces), as well as high data-rate communication systems.

The techniques already\adoped for gploiting parallelism and concurrenat the
instruction leel can be used equallyfettively at the bit-lgel. The use of dataflographs
for representing DSP algorithms has found much success with researchers, due to the
manipulatve covenience and the inherently intuiities with the flv of data through
such systems. Consequenttyost commonly used transformationsdndeen applied on
some form of datafls graph or anothein order to gtend these techniques to bité
manipulation, some modifications need to be madgistireg dataflov models of compu-

tation.

FIGURE 1. Dataflow representation of a simple ecursive filter

yln] = C.y[n-2] + x[n]

» ¥n] x[n] S = ¥In]

2.0 ReviEw

Digital filters can be modeled as itevatihomogeneous synchronous dat@f{8DF)
graphs. Certain classes of digital filters, such as reeuasid adapte filters, contain
feedback loops which impose aver bound on the iteration period. Axaeenple datafla

graph representation of a simple recegdilter is shavn in Figure 1.

March 13, 2000 2

The problem of finding the maximum sampling rate of reearaigorithms is consid-
ered in [1] by introducing the concept of a loop iteration bound for such systems. The iter-
ation bound is tied with a particular dataflgraph description. The iteration bound of a
loop is defined as the total computation time for the logidlelil by the number of delay
elements in that loop. The iteration bound of a datafiaph is the highest loop bound

present in that graph.

Retiming [2] is a technique for reducing the critical path delay of a datgfiaph.
The critical path in a dataflograph has the longest computation time among all paths that
contain zero delays. Bottlenecks are eliminated by redisimipthe critical path delay
across other paths, thereby reducing the sample period, enabling a higher data-rate. Retim-
ing is performed by relocating delay elements around the graph without changing the
input/output functionality of the system. Both the number of delays in the graph and the
iteration bound remain unchanged after retiming. Rem&ple of retiming a simple recur-
sive filter is shavn in Figure 2. The numbers in brat& nat to the nodes represent com-
putation delays associated with those nodes. The initial datgfgph has an iteration
bound of 2, and a critical path of 4 time units. After retiming, the critical path has attained

the iteration bound of 2.

FIGURE 2. Retiming Example

yln] = C.y[n-2] + x[n]

2 2
x[n] z“ . vl x[n] z“ . vl
D D e D
2) 5 2)

March 13, 2000 3

Under certain conditions, retiming can also be used to reduce drardampleity
and paver consumption. This can be done bying delays from multiple paths to single
paths (for gample, moing a delay element from each input path of an adder to its output
path). At the wrd-level, this represents aver delay element costubat the bit-lgel, the

cost at the output may be greater depending on the bit-width of the binary r@sllt w

Various vays in which dataflw graphs can be transformed into more parallel archi-
tectures are described in [3], including unfolding and foldingvlddal iterations of an
algorithm can be represented as linear depenydgaphs, and retiming can be used to
reduce the critical path. Mever, ary parallelism present across iterations cannot be
exploited, unless we unfold the recursion (either partially or completely). Unfolding is
used to represent multiple iterations of a loop as a single iteration, while preserving the
number of delays as well as precedence constraints in the dagadioh. Zero-delay
paths in the DFG olyantra-iteration precedence constraints and non-zero delay paths

obey interiteration precedence constraints.

There can be cases where the iteration bound cannot be attained without unfolding,
such as when a node in the loop needs more computation time than the iteration bound
itself. Assuming the node cannot be @oldavn into smaller components, retiming will
not help. Figure 3 sligs such anxample. In the initial datafl@ graph, the multiplier
takes 3 time units toxecute and the iteration bound is 2. Retiming cannot reduce the crit-
ical path belw 3, which limits the throughput. If we unfold the dataflgraph by adctor
of 2, as shen on the right in Figure 2, we can attain the iteration bound ok2, though
the critical path remains at 4 time units. Such, and gsenniques of optimum unfolding

are discussed in [4], [5], [6].dfding is another technique for dataflgraph transforma-

March 13, 2000 4

tion, and is the neerse of unfolding, and represents the re-use of DSP heedwy time-

division multiplexing. Such transformations require careful control circuitry design [7].

FIGURE 3. Unfolding Example (ITERATION BOUND = 2)

1
yln] = C.y[n-2] +x[n] x[2K] S - » ¥[2K]
[D
(3)
(1)
x[n] S » ¥n]
D
(3)
3
(3) D LD
(1)
x[2k+1] S » ¥[2k+1]
3.0 GBIECTIVE

In the design of application-specific hamhe, the trade-bbetween critical path
reduction and igister minimization is better answered at the hieleginstead of the ard
level. A direct-form FIR filter is shen in Figure 4, where the input samples and filter

coeficients are both 8-bits wide. The critical path is 5, and 16 bit delay elements are

needed.
FIGURE 4. Direct form FIR Filter

D D

& i
A B C ¥[n] = Ax[n] + Bx[n-1] + Cx[n-2]
(3) (3) (3)
¥n] (=) S Je
(1) (1)

March 13, 2000 5

Figure 5 shws the retimed (or transposed) FIR filter with a critical path of 4. This
graph requires 32 bit delay elements, due to xtra @recision required at the outputs of
the computational units. Note thab-level retiming would predict equal resource

requirements for both of these architectures.

FIGURE 5. Transposed-brm (retimed) FIR filter

¥[n] = Ax[n] + Bx[n-1] + Cx[n-2]

(1) D@ D

Figure 6 shavs an @ample of fine-grain cutset retiming, where atradelay ele-
ment has been introduced in order to pipeline the multipliers. Note that the critical path is
now 2 time units. Hwever, apart from the 3 meword delay elements, there is no infor-
mation on hw costly this transformation is in terms of haede complgity. Some trade-

offs in pipeline granularity at the bitvel are considered in [8].

FIGURE 6. Fine-grain cutset retiming

x[n]

¥[n] = Ax[n] + Bx[n-1] + Cx[n-2]

feed —forward cutset

1y o (1) D

A slightly enhanced model of computation needs to beldped: fine-grain data-

flow might behse like homogeneous SDBut each tokn needs to possess a “bit-width”

March 13, 2000 6

attribute (which vould translate directly into @aétor for actual delay element computa-
tion). It would be erroneous to model this as non-homogeneous SDF using “bit-width”
number of tokns on each edge, since all “bit-width” ¢évls &ist on the edge as a single

unit. Also, a cost function needs to be maintained for each node.

FIGURE 7. Filter synthesizer architecture

l CONSTRAINTS I

¥

(TSYNTHESIS/OPTIMIZATION_]

/

ARTTHMETIC UNIT
ALGCURITHM LIBRARY

TECHNOLOGY
LIERARY

Figure 7 shwrs a possible implementation of this system. The arithmetic unit algo-
rithm library will contain multiple fine-grain data-flograph representations of commonly
used computational units, including multipliers, adders and multiply-accumulate units
(future implementations might includetterfly and add-compare-select units). The tech-
nology library will include cost functions for each component (delay elements and fine-
grain graph nodes). Alternagily, these could be embedded in the arithmetic unit library

The actual synthesisauld consist of the folling:

provide a set of data-rate constraints, and a coarse-grain dagmélph of the filter
» the synthesis/optimization unit creates a fine-grain representation of thisvd gtaiidn

» perform retiming/unfolding/folding transformations in order to meet the data-rate, and

then to reduce hardwe complgity,

» corvert the resulting optimized fine-grain dataflgraph into a descripte language

representation.

March 13, 2000 7

There are three components to such an eiatle@) creating dicient data structures
for representing and transforming fine-grain datafjpaphs, (2) designing anfiefent
transformation algorithm for cerrgence to an optimum solutionygh constraints, and

(3) test the system on a represemtaset of filter algorithms.

4.0 REFERENCES

[1] M. Renfors and YNeuw, “The Maximum Sampling Rate of Digital Filters Under
Hardware Speed Constrairit$EE Transactions on Circuits and Systemal, V
CAS-28, No. 3, pp. 196-202, March 1981.

[2] C. E. Leiserson,.lRose, and J. Sax“Optimizing Synchronous Circuitry for
Retiming; 3rd Caltech Conference on VLSI, pp. 87-116, March 1983.

[3] K.K. Parhi, “Algorithm Transformations for Concurrent ProcessdPspceedings of
the IEEE, VI. 77, No. 12, pp. 1879-1895, December 1989.

[4] K.K. Parhi and D.G. Messerschmitt, “Static rate-optimal scheduling of iterati
data-flav programs via optimum unfoldifgEEE Transactions on Computergly
40, no. 2, pp. 178-195, February 1991.

[5] L.-F. Jeng and L.-G Chen, “rate-optimal DSP synthesis by pipeline and minimum
unfolding; IEEE Transactions on VLSI Systemglv2, no. 1, pp. 81-88, March
1994.

[6] L.-F. Chao and E. Sha, “Retiming and unfolding datertipaphs, Proceedings of
1992 International Conference oarBllel Processing, part I, pp. 33-40, August
1992.

[7] K. K. Parhi, C.-Y Wang, and A. PBrown, “Synthesis of Control Circuits inofded
Pipelined DSP Architecturé3EEE Journal of Solid-State CircuitspV 27, No. 1,
pp. 29-43, January 1992.

[8] C. Nagendra, R. M. Owens, and M. J. Irwin, “Desigade-ofs in High-Speed
Multipliers and FIR Filter$,9th International Conference on VLSI Design, January
1996.

March 13, 2000 8

