FILTER SYNTHESIS USING FINE-GRAIN DATA-FLOW GRAPHS

Wagas Akram, Cirrus Logic Inc., Austin, Texas

Abstract: This project is concened with finding ways to synthesize hard-
ware-efficient digital filters given technology and data rate constraints. The
synthesis flov targets embedded systems implemented in application specific
integrated circuits (ASICs). The flexibility inherent in such custom implemen-
tations provides opportunities br optimization down to the bit-level. This

effort attempts to construct a cowenient framework for the architectural
manipulation of filter designs at the bit level, in order to reduce hardvare
complexity while meeting fixed data-rate constraints. The objeacte is to talke
an applicative language description of an algorithm and trangfrm it into the

most hardware-efficient descriptve language epresentation at the bit-leel.

1.0 INTRODUCTION

Real-time signal processing systems implemented in application-specifi@tete cir-
cuits (ASICs) hee certain benefits, as well as unique limitations on performance. Depending on
the application, area andywer consumption can be &vof the major concerns thatwiian ASIC
solution. The feasibility of portable embedded applications generally impose an upper limit on
power consumption and cost. These limits translate directly to die area. The synthesis of such sys-
tems thus requires consideration of these properties. In contrast, embedded digital signal proces-
sor (DSP) tageted implementations consume more@oand can occypa lager die area.

However, DSP implementations t@ the distinct adantage of programmability

May 10, 2000 1



This project is concerned@usively with the architectural synthesis of a subset of signal
processing functions (digital filters) in ASIC ha@he. The chief objeate is to demonstrate that
the use of fine-grain data Wographs (FGDFGs) can imp® the quality of results from a high-
level synthesis tool, and carvgia more accurate wieof resource utilization. A great deal of
research has been done in the area of higtl-synthesis of these algorithms [1], and conse-
guently tools &ist which perform this function with the minimization of resource usage at the
forefront of consideration. Examples include HYPER [2,3] from thevéfaity of California at
Berkeley, as well as proprietary tools from companies such as Altera, Synopsys, Cadence, etc.
Due to its relatvely accessible documentation, HYPER will be used to compare performance

wherever possible.

In ary synthesis system, the algorithm is represented as a daigriph (DFG) [1]. This
representation enables the tool tiicegntly and easily manipulate the system resource usage,
while maintaining functionalityThe first step is to ensure that real-time constraints are met. The
most stringent of these constraints is the data rate. Real-time systems are characterized by an
effective infinite loop of operations performed on incoming data, and require that all processing
be done at the rate of auai, in order to @oid kuild-up of data. High-keel transformations, such
as retiming [1,4], folding [1] and unfolding [1,5,6,7] can be applied, in order to meet the input
data rate. These transformations typically treatlevel operations lik addition and multiplica-
tion as monolithic entities, and attempt to satisfy the constraints using the mostexisteef
implementation of thesewslevel operations. & example, HYPER uses a hardwe library con-
sisting of seeral implementations of multipliers. Each implementation displays superior perfor-
mance in a particular subset of atiitikss such as area, speed, andgyaconsumption. After the

data rate constraint is met, a reduction in resource utilization is attempted. In ottier mgh-

May 10, 2000 2



level transformations are am applied, this time to the data rate satisfied DFG, in order to pro-
duce the most hardwe eficient architecture. HYPER performs these operationsvwerae

stages, the first of which is the “design spaqdaration” stage, which places bounds on the per-
formance [9] of the algorithm gen the hardware library This stage relies on the library imple-
mentations of the {@-level operations to remain static throughout the synthesis process. In other
words, &en though the tool is free to choose from the entire library until the end of the synthesis
process, the actual number of choices remains static. Subsequent stages)dibrmations for
resource utilization [8], use the informatioatigered in the design spaceleration stage to con-
strain the optimization process. Finallge resultant structure of the DFG is used to choose the
least epensve library units in the final hardwe mapping stage.

FIGURE 1. Fine-grain data flow representations of a multiplier
(a) SERIAL MULTIPLIER (b) PARALLEL MULTIPLIER

b =#bits in multiplicand / / /
™ \— \— \— === === \—
A B -t -t s SRR -t

Full Adder

P —@' @ EONTROL |
—/

CSA= Carry Save Adder

2.0 HNE-GRAIN DATA FLOW

Fine-grain data flo refers to the representation ofvidevel operations using the same
structure and semantics as the higkeel modules in the hierarghThus, a multiplier may ha
serial and parallel fine-grain descriptions asasshim Figure 1. These fine-grain modules can be
placed in a module librarywhere thg can be accessed by the synthesis tool, similar to dlge w
HYPER uses the hardwe library The diference here is that a harae library similar to that

used in HYPER, is still required and is still accessed at similar points in the synthesis process.

May 10, 2000 3



Based on the design spacgleration, the hierarghis flattened using particular FGDFG repre-
sentations of l-level operations, while applying transformations for resource utilization. The
key difference between HYPE®"matching process” and the FGDFG approach is that in the
former, the hardware units are fied. That is, their sub-elements cannot be used in the transforma-
tion process. The units are selected based on the speed, area, aneldrgute-df and then

used as monolithic units in the final haate mapping. In HYPER, the DFG transformation and
resource allocation stages are distinctwileer, the FGDFG approach ngas the tw stages in
order to &ploit hardware redundancies within theNdevel elements. & example, a multiplier is
essentially a series of additions, so a multiply-accumulate unit, and hence a finite duration
impulse response (FIR) filtezan be implemented with a single adder and a numbegisters

(for storage of intermediate results), yded the real-time data rate constraint can be met. If this
implementation of the multiplier pressed as a FGDFG) is substituted into the highl-BFG,

the transformation stage is free to\arat this conclusion, if necessafyn alternate implementa-
tion of the multipliey shavn in Figure 1b, using carry~gaadders (CSA), may be used to imyaro

performanceen furthey since the speed penalty of carry pragaan need not be defed.

The major adantage of FGDFG transformations is the ability to tap into #nety and
alundance of algorithms and architectures for implementinigibg-blocks (multiplication
units, multiply-accumulate units, add-compare-select units, etc.), while obtaining the most
resource-dicient implementation possible. In contrast, DSBe#ed synthesis cannogoit this
adwantage, because the granularity of operations is usualy lfix the taget DSP architecture. In
theory the granularity of the ASIC tgeted synthesis FGDFG representation can be made as fine

as the gte-level.

May 10, 2000 4



3.0 MODELING AND |MPLEMENT ATION

The most common computational model for signal processing systems is Synchronous
Data Flav (SDF) [10]. This is a well-understood and mature model, and is ideally suited for data-
intensve graphs. There argisting and prgen transformation, scheduling, and resource alloca-
tion techniques for SDHowever, there is an implicit assumption of the bit-width of dateviihgy
over arcs. This is not an issue for DSRyé&ted systems, which share this assumption, and rely on
the system designer to set they&rbit-width for all arcs, and thus thegar embedded DSP
However, ASIC tagets are &ry sensitre to the width of these arcs, andwd greatly benefit, in
the minimum resource usage sense, from a system which maintains just enough precision on each
arc. Feed-fonard systems are usually the majority of bantdrs when this consideration is
made. Thus, the bit-width of each arc needs to be maintained astestio each arc. One could
argue that an eight-bit output from a block can simply be modeled as an eightetaput arc
(according to SDF semantics and nomenclature). Thigres, constrains the output to adik
width. Certain transformations may require degént precision to be maintained when the block
is placed elsghere. The solution is to model the eight-bit output as eight outputs in a homoge-
neous SDF graph.of simplicity, DFGs initially use constant bit-widths for arcs (with a “bit-

width” attribute on each arc). There is also a “delay” attebwith each node.

In the transformation stage, the objeetfunction [9] has to be modified in order to
account for the granularityn this attempt, the total area is used as a simple algetthis is cal-
culated by adding the area attribs of each element (including delay-elements) currently in the
FGDFG, and a globalariable is maintained throughout the transformation process. Because
today’s standard-cell ASICs are implemented in multi-layer interconnect processes, interconnect

usage reduction has a relally lower priority.

May 10, 2000 5



Due to the enormous comgity of implementing such a synthesis system, a subset of
transformations has been implemented, including retiming, some limited assiyciand fold-
ing. In some cases, it is assumed that the DFG has been optimally-unfolded [5] in order to meet
the data rate constraint. The goal here is not to implemiest algorithms for manipulating
data flav graphs, bt to demonstrate that solutions obtained from using fine-grain data flo
graphs instead of coarse-grain data/figaphs are of higher qualitgnd in some cases, are the
only solutions thatxast for certain real-time constraints. This analysis is not intendesidodne
transformation wer another: both coarse-grain and fine-grain approaches are tested using the lim-
ited set of transformations implementedwdger, the retiming transformation is a case where the

fine-grain approach benefits by a greater amount.

Synthesis consists of\saral major steps. First, the input DFG is scheduled, and the
resource utilization bounds are calculated [3]. A heuristic is used to substitute more “retiming
friendly” fine-grain models of elements in the critical path(s). The retiming friendlinessiggtrib
on FGDFG modules is purely subjeetj and is a ratio of the granularity of the particular fine-
grain module to the granularity of the surrounding graph in the t@bdeaph. This is the module
allocation stage. All arcs with delays are then brglkand a directed ydic graph is constructed.

The graph is scheduled, and resources are allocated. This allocation is used as a bound for subse-
guent transformation optimization. The graph is transformed (using retiming, as#ycietit.),

and re-scheduled to compute th&mesource allocation. A branch-and-bound scheme is used to

find local minima, while back-tracking on the transformation decision tree. Once the local minima

is found, the module allocation step is repeated with slightlgrdiit combinations of fine-grain
modules, and the melocal minima is computed in thisay After a useiselected number of mod-

ule combinations, the list of local minima are compared, and the best solution selected. The syn-

May 10, 2000 6



thesis produces a datavilggraph with allocated resources, as well asaifistantiated control
blocks. These are simply firing schedules for the surrounding modules, and can be synthesized
into multiplexors. The resource compley of these blocks is estimated as being proportionate to

the length of their [periodic] schedules.

FIGURE 2. Initial Biquad filter

IN— AL A3—0UT
D |
@@E@@

4.0 ResuLTs
As a simple rample, Figure 2 shwes a second-order biquad section. Assuming the adder
executes in 1 time unit, and the multiplieteeutes in 2 time units, the coarse-grain biquad

requires tvo multipliers and one adder tgexute in 4 time units, as sk in Table 1.

FIGURE 3. Retimed fine-grain Biquad filter

IN ouT
\AS)—’

Figure 3 shwrs the same biquadybwith fine-grain multiplier model from Figure 1b,
where the carry s@ array/tree has been grouped into X (partial product reduction stage) and the
2-input carry-propaate adder is called. Yhis implementation requires only onef¢etive] mul-

tiplier (since, 1 X+ 1Y =1 MUL), and one adder txecute in 4 time units, as skin in Table 1.

May 10, 2000 7



Both implementations use &vayisters. The ééctive values are used, since the adder “shares the
tasks” of the multipligrthereby impreing the resource utilization for a single multiplier solution.

A seventh order infinite duration impulse response (lIR) filter implemented in the same manner
would require three multipliers less than the coarse-grain solution, while still meeting the data rate
constraints. Using finegrain graphs for the multiplier and the adders, and more accurate timing

models, a hardare resource reduction of about 32%svachieed.

TABLE 1. Comparison between coarse-grain and fine-grain appach using simple biquad decomposition

COARSE-GRAIN BIQ UAD FINE-GRAIN BIQ UAD
TIME TIME Reduced
UNIT ADDER MULT1 MULT2 UNIT ADD1 ADD2 MULT
1 A2 M2 M3 1 Al Y4 X3
2 Al 2 A4 Y3 X1
3 A4 M1 M4 3 A3 Y1 X2
4 A3 4 A2 Y2 X4

This comparison is by no means comprehendut demonstrates that fine-grain datavflo
modeling can impnee the quality of resource usage minimization tools. Coupled withxtba-e
sive transformation library that current coarse-grain synthesis tools grmapkry paverful tool
can emage. Gven more time, it wuld be interesting to implement a full suite of transformations,
and use@sting benchmark graphs for an accurate comparison of the actual speedup. Of course,
the search for a solution is ¢gely dependent upon the heuristic used to select fine-grain modules

from the module library in the first place.

May 10, 2000 8



5.0 REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

K.K. Parhi, “Algorithm Transformations for Concurrent ProcessdpPspceedings of
the IEEE, vol. 77, no. 12, pp. 1879-1895, December 1989.

C. Chu, et. al., “"HYPER : An Interagé Synthesis Brironment for High Performance
Real TIme Applications,Proc. IEEE ICCD Conference, November 1989.

J. Rabag and M. Potknjak, “Resource Dven Synthesis in the HYPER Systém,
|[EEE ISCAS 1990, vol. 4, pp.2592-2595, NeOrleans, LA, May 1990.

C. E. Leiserson,.RRose, and J. Sax“Optimizing Synchronous Circuitry for
Retiming; Caltech Conference on VLS, pp. 87-116, March 1983.

K.K. Parhi and D.G. Messerschmitt, “Static Rate-Optimal Scheduling of iterati
Data-Flav Programs via Optimum Unfoldifg,EEE Transactions on Computers,
vol. 40, pp. 178-195, February 1991.

L.-F. Jeng and L.-G Chen, “Rate-Optimal DSP Synthesis by Pipeline and Minimum
Unfolding; IEEE Transactions on VLS Systems, vol. 2, pp. 81-88, March 1994.

L.-F. Chao and E. Sha, “Retiming and Unfolding DataaF&raphs, Proc. of |IEEE
International Conference on Parallel Processing, part 11, pp. 33-40, August 1992.

M. Potkonjak and J. Rabge“Optimizing Resource Utilization Usingdnsformations,
|EEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 13, pp. 277-292, March 1994.

J. Rabag and M. Potknjak, “Estimating Implementation Bounds for Reah& DSP
Application Specific Circuits,|EEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 13, pp. 669-683, June 1994.

E.A. Lee and D.G. Messerschmitt, “Synchronous DataHRescribing DSP Algorithms
for Parallel Computatioii,chapter inVLS Sgnal Processing Il, S-Y Kung, Editor
IEEE Press, Ne York, 1986.

May 10, 2000 9



