
May 10, 2000 1

FILTER SYNTHESIS USING FINE-GRAIN DATA-FLOW GRAPHS

Waqas Akram, Cirrus Logic Inc., Austin, Texas

Abstract: This pr oject is concerned with finding ways to synthesize hard-

ware-efficient digital filters given technology and data rate constraints. The

synthesis flow targets embedded systems implemented in application specific

integrated circuits (ASICs). The flexibility inherent in such custom implemen-

tations provides opportunities for optimization down to the bit-level. This

effort attempts to construct a convenient framework for the architectural

manipulation of filter designs at the bit level, in order to reduce hardware

complexity while meeting fixed data-rate constraints. The objective is to take

an applicative language description of an algorithm and transform it into the

most hardware-efficient descriptive language representation at the bit-level.

1.0 INTRODUCTION

Real-time signal processing systems implemented in application-specific integrated cir-

cuits (ASICs) have certain benefits, as well as unique limitations on performance. Depending on

the application, area and power consumption can be two of the major concerns that drive an ASIC

solution. The feasibility of portable embedded applications generally impose an upper limit on

power consumption and cost. These limits translate directly to die area. The synthesis of such sys-

tems thus requires consideration of these properties. In contrast, embedded digital signal proces-

sor (DSP) targeted implementations consume more power and can occupy a larger die area.

However, DSP implementations have the distinct advantage of programmability.

May 10, 2000 2

This project is concerned exclusively with the architectural synthesis of a subset of signal

processing functions (digital filters) in ASIC hardware. The chief objective is to demonstrate that

the use of fine-grain data flow graphs (FGDFGs) can improve the quality of results from a high-

level synthesis tool, and can give a more accurate view of resource utilization. A great deal of

research has been done in the area of high-level synthesis of these algorithms [1], and conse-

quently, tools exist which perform this function with the minimization of resource usage at the

forefront of consideration. Examples include HYPER [2,3] from the University of California at

Berkeley, as well as proprietary tools from companies such as Altera, Synopsys, Cadence, etc.

Due to it’s relatively accessible documentation, HYPER will be used to compare performance

wherever possible.

In any synthesis system, the algorithm is represented as a data flow graph (DFG) [1]. This

representation enables the tool to efficiently and easily manipulate the system resource usage,

while maintaining functionality. The first step is to ensure that real-time constraints are met. The

most stringent of these constraints is the data rate. Real-time systems are characterized by an

effective infinite loop of operations performed on incoming data, and require that all processing

be done at the rate of arrival, in order to avoid build-up of data. High-level transformations, such

as retiming [1,4], folding [1] and unfolding [1,5,6,7] can be applied, in order to meet the input

data rate. These transformations typically treat low-level operations like addition and multiplica-

tion as monolithic entities, and attempt to satisfy the constraints using the most cost-effective

implementation of these low-level operations. For example, HYPER uses a hardware library con-

sisting of several implementations of multipliers. Each implementation displays superior perfor-

mance in a particular subset of attributes such as area, speed, and power consumption. After the

data rate constraint is met, a reduction in resource utilization is attempted. In other words, high-

May 10, 2000 3

level transformations are again applied, this time to the data rate satisfied DFG, in order to pro-

duce the most hardware efficient architecture. HYPER performs these operations in several

stages, the first of which is the “design space exploration” stage, which places bounds on the per-

formance [9] of the algorithm given the hardware library. This stage relies on the library imple-

mentations of the low-level operations to remain static throughout the synthesis process. In other

words, even though the tool is free to choose from the entire library until the end of the synthesis

process, the actual number of choices remains static. Subsequent stages, like transformations for

resource utilization [8], use the information gathered in the design space exploration stage to con-

strain the optimization process. Finally, the resultant structure of the DFG is used to choose the

least expensive library units in the final hardware mapping stage.

FIGURE 1. Fine-grain data flow representations of a multiplier

2.0 FINE-GRAIN DATA FLOW

Fine-grain data flow refers to the representation of low-level operations using the same

structure and semantics as the higher-level modules in the hierarchy. Thus, a multiplier may have

serial and parallel fine-grain descriptions as shown in Figure 1. These fine-grain modules can be

placed in a module library, where they can be accessed by the synthesis tool, similar to the way

HYPER uses the hardware library. The difference here is that a hardware library, similar to that

used in HYPER, is still required and is still accessed at similar points in the synthesis process.

May 10, 2000 4

Based on the design space exploration, the hierarchy is flattened using particular FGDFG repre-

sentations of low-level operations, while applying transformations for resource utilization. The

key difference between HYPER’s “matching process” and the FGDFG approach is that in the

former, the hardware units are fixed. That is, their sub-elements cannot be used in the transforma-

tion process. The units are selected based on the speed, area, and/or power trade-off, and then

used as monolithic units in the final hardware mapping. In HYPER, the DFG transformation and

resource allocation stages are distinct. However, the FGDFG approach merges the two stages in

order to exploit hardware redundancies within the low-level elements. For example, a multiplier is

essentially a series of additions, so a multiply-accumulate unit, and hence a finite duration

impulse response (FIR) filter, can be implemented with a single adder and a number of registers

(for storage of intermediate results), provided the real-time data rate constraint can be met. If this

implementation of the multiplier (expressed as a FGDFG) is substituted into the high-level DFG,

the transformation stage is free to arrive at this conclusion, if necessary. An alternate implementa-

tion of the multiplier, shown in Figure 1b, using carry-save adders (CSA), may be used to improve

performance even further, since the speed penalty of carry propagation need not be suffered.

The major advantage of FGDFG transformations is the ability to tap into the variety and

abundance of algorithms and architectures for implementing building-blocks (multiplication

units, multiply-accumulate units, add-compare-select units, etc.), while obtaining the most

resource-efficient implementation possible. In contrast, DSP targeted synthesis cannot exploit this

advantage, because the granularity of operations is usually fixed by the target DSP architecture. In

theory, the granularity of the ASIC targeted synthesis FGDFG representation can be made as fine

as the gate-level.

May 10, 2000 5

3.0 MODELING AND IMPLEMENT ATION

The most common computational model for signal processing systems is Synchronous

Data Flow (SDF) [10]. This is a well-understood and mature model, and is ideally suited for data-

intensive graphs. There are existing and proven transformation, scheduling, and resource alloca-

tion techniques for SDF. However, there is an implicit assumption of the bit-width of data flowing

over arcs. This is not an issue for DSP targeted systems, which share this assumption, and rely on

the system designer to set the target bit-width for all arcs, and thus the target embedded DSP.

However, ASIC targets are very sensitive to the width of these arcs, and would greatly benefit, in

the minimum resource usage sense, from a system which maintains just enough precision on each

arc. Feed-forward systems are usually the majority of benefactors when this consideration is

made. Thus, the bit-width of each arc needs to be maintained as attributes of each arc. One could

argue that an eight-bit output from a block can simply be modeled as an eight-token output arc

(according to SDF semantics and nomenclature). This however, constrains the output to a fixed

width. Certain transformations may require a different precision to be maintained when the block

is placed elsewhere. The solution is to model the eight-bit output as eight outputs in a homoge-

neous SDF graph. For simplicity, DFGs initially use constant bit-widths for arcs (with a “bit-

width” attribute on each arc). There is also a “delay” attribute with each node.

In the transformation stage, the objective function [9] has to be modified in order to

account for the granularity. In this attempt, the total area is used as a simple objective. This is cal-

culated by adding the area attributes of each element (including delay-elements) currently in the

FGDFG, and a global variable is maintained throughout the transformation process. Because

today’s standard-cell ASICs are implemented in multi-layer interconnect processes, interconnect

usage reduction has a relatively lower priority.

May 10, 2000 6

Due to the enormous complexity of implementing such a synthesis system, a subset of

transformations has been implemented, including retiming, some limited associativity, and fold-

ing. In some cases, it is assumed that the DFG has been optimally-unfolded [5] in order to meet

the data rate constraint. The goal here is not to implement efficient algorithms for manipulating

data flow graphs, but to demonstrate that solutions obtained from using fine-grain data flow

graphs instead of coarse-grain data flow graphs are of higher quality, and in some cases, are the

only solutions that exist for certain real-time constraints. This analysis is not intended to favor one

transformation over another: both coarse-grain and fine-grain approaches are tested using the lim-

ited set of transformations implemented. However, the retiming transformation is a case where the

fine-grain approach benefits by a greater amount.

Synthesis consists of several major steps. First, the input DFG is scheduled, and the

resource utilization bounds are calculated [3]. A heuristic is used to substitute more “retiming

friendly” fine-grain models of elements in the critical path(s). The retiming friendliness attribute

on FGDFG modules is purely subjective, and is a ratio of the granularity of the particular fine-

grain module to the granularity of the surrounding graph in the top-level graph. This is the module

allocation stage. All arcs with delays are then broken, and a directed acyclic graph is constructed.

The graph is scheduled, and resources are allocated. This allocation is used as a bound for subse-

quent transformation optimization. The graph is transformed (using retiming, associativity, etc.),

and re-scheduled to compute the new resource allocation. A branch-and-bound scheme is used to

find local minima, while back-tracking on the transformation decision tree. Once the local minima

is found, the module allocation step is repeated with slightly different combinations of fine-grain

modules, and the new local minima is computed in this way. After a user-selected number of mod-

ule combinations, the list of local minima are compared, and the best solution selected. The syn-

May 10, 2000 7

thesis produces a data flow graph with allocated resources, as well as a few instantiated control

blocks. These are simply firing schedules for the surrounding modules, and can be synthesized

into multiplexors. The resource complexity of these blocks is estimated as being proportionate to

the length of their [periodic] schedules.

FIGURE 2. Initial Biquad filter

4.0 RESULTS

As a simple example, Figure 2 shows a second-order biquad section. Assuming the adder

executes in 1 time unit, and the multiplier executes in 2 time units, the coarse-grain biquad

requires two multipliers and one adder to execute in 4 time units, as shown in Table 1.

FIGURE 3. Retimed fine-grain Biquad filter

Figure 3 shows the same biquad, but with fine-grain multiplier model from Figure 1b,

where the carry save array/tree has been grouped into X (partial product reduction stage) and the

2-input carry-propagate adder is called Y. This implementation requires only one [effective] mul-

tiplier (since, 1 X + 1 Y = 1 MULT), and one adder to execute in 4 time units, as shown in Table 1.

May 10, 2000 8

Both implementations use five registers. The effective values are used, since the adder “shares the

tasks” of the multiplier, thereby improving the resource utilization for a single multiplier solution.

A seventh order infinite duration impulse response (IIR) filter implemented in the same manner

would require three multipliers less than the coarse-grain solution, while still meeting the data rate

constraints. Using finer-grain graphs for the multiplier and the adders, and more accurate timing

models, a hardware resource reduction of about 32% was achieved.

This comparison is by no means comprehensive, but demonstrates that fine-grain data flow

modeling can improve the quality of resource usage minimization tools. Coupled with the exten-

sive transformation library that current coarse-grain synthesis tools employ, a very powerful tool

can emerge. Given more time, it would be interesting to implement a full suite of transformations,

and use existing benchmark graphs for an accurate comparison of the actual speedup. Of course,

the search for a solution is largely dependent upon the heuristic used to select fine-grain modules

from the module library in the first place.

TABLE 1. Comparison between coarse-grain and fine-grain approach using simple biquad decomposition

COARSE-GRAIN BIQ UAD FINE-GRAIN BIQ UAD

TIME
UNIT ADDER MULT1 MULT2

TIME
UNIT ADD1 ADD2

Reduced
MULT

1 A2 M2 M3 1 A1 Y4 X3
2 A1 2 A4 Y3 X1
3 A4 M1 M4 3 A3 Y1 X2
4 A3 4 A2 Y2 X4

May 10, 2000 9

5.0 REFERENCES

[1] K.K. Parhi, “Algorithm Transformations for Concurrent Processors,” Proceedings of

the IEEE, vol. 77, no. 12, pp. 1879-1895, December 1989.

[2] C. Chu, et. al., “HYPER : An Interactive Synthesis Environment for High Performance

Real TIme Applications,” Proc. IEEE ICCD Conference, November 1989.

[3] J. Rabaey and M. Potkonjak, “Resource Driven Synthesis in the HYPER System,”

IEEE ISCAS 1990, vol. 4, pp.2592-2595, New Orleans, LA, May 1990.

[4] C. E. Leiserson, F. Rose, and J. Saxe, “Optimizing Synchronous Circuitry for

Retiming,” Caltech Conference on VLSI, pp. 87-116, March 1983.

[5] K.K. Parhi and D.G. Messerschmitt, “Static Rate-Optimal Scheduling of Iterative

Data-Flow Programs via Optimum Unfolding,” IEEE Transactions on Computers,

vol. 40, pp. 178-195, February 1991.

[6] L.-F. Jeng and L.-G Chen, “Rate-Optimal DSP Synthesis by Pipeline and Minimum

Unfolding,” IEEE Transactions on VLSI Systems, vol. 2, pp. 81-88, March 1994.

[7] L.-F. Chao and E. Sha, “Retiming and Unfolding Data-Flow Graphs,” Proc. of IEEE

International Conference on Parallel Processing, part II, pp. 33-40, August 1992.

[8] M. Potkonjak and J. Rabaey, “Optimizing Resource Utilization Using Transformations,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 13, pp. 277-292, March 1994.

[9] J. Rabaey and M. Potkonjak, “Estimating Implementation Bounds for Real Time DSP

Application Specific Circuits,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 13, pp. 669-683, June 1994.

[10] E.A. Lee and D.G. Messerschmitt, “Synchronous Data Flow: Describing DSP Algorithms

for Parallel Computation,” chapter inVLSI Signal Processing II, S-Y Kung, Editor,

IEEE Press, New York, 1986.

