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NSP Extensions Use SIMD Semantics
SIMD benefits:
• Takes advantage of data level parallelism to provide order of

magnitude speedups for many operations common in signal
processing.

• One vector instruction can do work of many scalar instructions,
reducing working set size for instructions. (Benefits i-cache, saves
memory bandwidth for data).

SIMD drawbacks:
• Auto-vectorizing compilers still in experimental stage of development.
• SIMD does not provide any speedup for some algorithms.
• Existing applications structured for scalar computation semantics.
• Vector data-types not built into ANSI C; C compilers must be

extended (hacked) to generate good SIMD code (using inline assembly
macros is a common workaround).

• Look and feel of various NSP architectures varies widely.



Code-Generation in Ptolemy
Ptolemy: Simulation and prototyping of heterogeneous systems

• Agility – supports distinct computational models so that each can be
simulated in a manner appropriate and natural to that system

• Heterogeneous – allows distinct computational models to co-exist
seamlessly for the purpose of studying their interactions

• Extensible – easy integration of new computational models without
changes to existing ones

• Ease of Use – Graphical interface at an abstract, readable level

Code-Generation:
• Part of the software synthesis flow: partition -> schedule -> generate

• The ability to target a specific architecture or environment

• Ease of re-targeting, re-partitioning, and re-synthesis through the use
of code domains



NSP Applications

• Certain algorithms take advantage of NSP

– Median Filters

– FFT, FIR

– Convolution

– Matrix math

– Dequantizer and Filter Banks in MPEG decoders

• Existing stars in Ptolemy targeting NSP
– UltraSparc VIS (FIR, FFT)

– Motorola DSP 56000



Plans & Goals

• Main goal is to benchmark effectiveness of using NSP extensions
without resorting to hand-written assembly code.

• Will implement new Ptolemy stars with ability to generate C code that
utilizes Altivec technology.

• Will use the newly released Altivec enabled gcc to compile C code that
we will generate in the Ptolemy framework.

• Will use a timing model (available publicly from Apple) to determine
performance differences between scalar and vectorized code compiled
for the MPC7400 PowerPC processor (G4).

• We will learn about Ptolemy’s code generation abilities, work with
some signal processing algorithms, use a cutting-edge NSP extension,
and do a performance analysis in the process.


