
Native Signal Processing With
Altivec in the Ptolemy

Environment
Ken Aponte & Ken Logan

EE382C Embedded Software Systems

Spring 2000



NSP Extensions
(Approx. Chronologically Ordered)

Advertise improvements on MMX
context switch time.

3DNow! (21)

Enhanced 3DNow!(45)

Amd x86

32 128 bit registers addedAltivec (162)PowerPC

8 FP Registers used for MMX regs

8 dedicated SSE regs

MMX (57)

SSE (71)

Intel x86

MVI (13)Digital Alpha

32 64 bit FP regs. (+192 bit
accumulator)

MDMX (?)SGI MIPS

32 bit wide (MAX-1)

64 bit wide (MAX-2)

MAX-1 (?)

MAX-2 (?)

HP PA-RISC

No Saturation Arithmetic, FP Registers
used for vector registers

VIS (50+)Sun UltraSPARC

Comments
NSP Extension

(# Instructions)
Architecture



NSP Extensions Use SIMD Semantics
SIMD benefits:
• Takes advantage of data level parallelism to provide order of

magnitude speedups for many operations common in signal
processing.

• One vector instruction can do work of many scalar instructions,
reducing working set size for instructions. (Benefits i-cache, saves
memory bandwidth for data).

SIMD drawbacks:
• Auto-vectorizing compilers still in experimental stage of development.
• SIMD does not provide any speedup for some algorithms.
• Existing applications structured for scalar computation semantics.
• Vector data-types not built into ANSI C; C compilers must be

extended (hacked) to generate good SIMD code (using inline assembly
macros is a common workaround).

• Look and feel of various NSP architectures varies widely.



Code-Generation in Ptolemy
Ptolemy: Simulation and prototyping of heterogeneous systems

• Agility – supports distinct computational models so that each can be
simulated in a manner appropriate and natural to that system

• Heterogeneous – allows distinct computational models to co-exist
seamlessly for the purpose of studying their interactions

• Extensible – easy integration of new computational models without
changes to existing ones

• Ease of Use – Graphical interface at an abstract, readable level

Code-Generation:
• Part of the software synthesis flow: partition -> schedule -> generate

• The ability to target a specific architecture or environment

• Ease of re-targeting, re-partitioning, and re-synthesis through the use
of code domains



NSP Applications

• Certain algorithms take advantage of NSP

– Median Filters

– FFT, FIR

– Convolution

– Matrix math

– Dequantizer and Filter Banks in MPEG decoders

• Existing stars in Ptolemy targeting NSP
– UltraSparc VIS (FIR, FFT)

– Motorola DSP 56000



Plans & Goals

• Main goal is to benchmark effectiveness of using NSP extensions
without resorting to hand-written assembly code.

• Will implement new Ptolemy stars with ability to generate C code that
utilizes Altivec technology.

• Will use the newly released Altivec enabled gcc to compile C code that
we will generate in the Ptolemy framework.

• Will use a timing model (available publicly from Apple) to determine
performance differences between scalar and vectorized code compiled
for the MPC7400 PowerPC processor (G4).

• We will learn about Ptolemy’s code generation abilities, work with
some signal processing algorithms, use a cutting-edge NSP extension,
and do a performance analysis in the process.


