
Native Signal Processing With Altivec In the Ptolemy Environment
Ken Aponte and Ken Logan

May 10, 2000

Abstract

The authors extend the functionality of the Ptolemy simulation and code generation facilities by
implementing Altivec enabled signal processing kernels, the FFT and FIR, as Ptolemy actors.
These actors are then used in Ptolemy demo systems, compiled using the GNU compiler
enhanced with support for Altivec, and simulated using the Psim PowerPC simulator. This
integration of tools, with Ptolemy as the foundation, provides the design, synthesis and
simulation environment necessary for rapid prototyping of systems. Performance results are
obtained and presented for all tests utilizing both scalar and Altivec versions of the actors.

1 Introduction to Native Signal Processing

Many of the modern general-purpose processor architectures now include native signal

processing (NSP) extensions. Hewlett Packard PA-RISC, Sun Sparc, Silicon Graphics MIPS,

Digital Alpha, Intel x86, AMD x86, and Motorola PowerPC have all introduced single

instruction multiple data (SIMD) instruction set extensions to take advantage of the data

parallelism inherent in streaming signal processing and graphics applications. There is a great

deal of diversity in the features included in the various NSP extensions, possibly due to the fact

that we are just beginning to understand the workloads targeted by the extensions.

Altivec is unique among the NSP extensions because it adds support for a separate 128

bit vector multimedia unit in the processor [1]. Altivec technology is available in the currently

shipping PowerPC 7400 processor and another recently announced [2] member of the PowerPC

G4 family.

Altivec is the only NSP extension that we identified through our research which offers

thirty-two 128 bit wide dedicated vector registers. Unlike the Intel x86 compatible NSP

extensions, there is no performance penalty associated with a ‘context switch’ to switch in or out

of vector mode. In fact, it is possible to write code that uses the integer unit, vector unit, and

floating point unit concurrently on a PowerPC processor that implements Altivec [3]. The vector

registers provide 8-way parallelism for 16-bit signed and unsigned integers and 16-way

parallelism for 8-bit signed and unsigned integers. Saturation arithmetic and a rich variety of

instructions are included in the Altivec instruction set. The Altivec programming model is

documented in [4,5].

Currently, programmers must modify existing applications or write applications explicitly

for a certain NSP extension. In [6, 7, 8] it was stated that this requirement presents significant

usage problems for the NSP extensions. Since the new data-types and operations on them are not

standardized, code utilizing them is not portable at the source level between different NSP

extensions. Using libraries provided by the processor vendors doesn’t remedy this portability

problem, due to the fact that the library API’s are also not standardized. Compiler support

typically uses function inlining or macro calls in code segments that will benefit from using the

NSP extensions [6]. Ideally, compilers of the future will be able to analyze and ‘auto-vectorize’

code to be optimized for a given NSP extension. This would make the new semantics invisible to

the programmer, but such compilers do not currently exist [6]. A possible solution to this

problem is finding an abstract representation that can efficiently be converted to software for an

arbitrary NSP extension. We discuss using Ptolemy to accomplish this solution in the next

section.

2 Programming with Altivec in Ptolemy

Ptolemy is a software environment for the simulation and prototyping of heterogeneous

systems [9]. It provides a software engineer or hardware designer a clear view of natural

partitions of software and hardware in a single, heterogeneous environment.

This is accomplished in Ptolemy by providing an object-oriented kernel that is free from

any particular model of computation. New models of computation (domains) can be easily added

without affecting existing domains. A domain may either simulate on a desktop workstation or

synthesize code. Once implemented, domains can be interwoven and manipulated. Thus,

Ptolemy provides a heuristic approach to specify, simulate, and synthesize heterogeneous

systems, which in general, is a very difficult problem.

“Code generation” refers to the synthesis of software corresponding to the algorithm [9].

The Ptolemy stars we developed produce C source code that use Motorola’s Altivec extensions.

Ptolemy (combined with the tools described below in section 3.1) provides a complete design

system from concept to implementation to synthesis and test. The kernels developed by the

authors can form the basis of larger systems. Such systems can be prototyped with relative ease

in a “plug-and-play” manner – Altivec stars are substituted for their scalar versions in a graphical

environment and almost immediately the resultant system can be evaluated. Chen, Reekie,

Bhavem, and Lee conducted similar work in [7] using the NSP instructions of the Sun UltraSparc

architecture, VIS.

3 Implementing Altivec enhanced NSP Kernels

3.1 Tool-set used

We used several tools in addition to Ptolemy to complete our experiments. The GNU

compiler enhanced with support for Altivec [10] was used to compile the code generated by

Ptolemy. The GNU compiler was configured as a cross-compiler targeting ‘powerpc-eabisim.’

The ‘powerpc-eabisim’ executables were then run on the Psim PowerPC simulator. The Psim

simulator is included among the GNU tools bundled with the GNU compiler. We used the trace

generation capabilities of Psim to generate traces that were then used by the sim_g4 [11]

PowerPC timing simulator to provide detailed timing information.

3.2 Fixed Point FIR Implementation

We chose to implement the FIR filter due to its widespread use in signal processing

applications. It was shown by Daubechies in [12] that under certain regularity conditions

discrete-time filters will lead to continuous-time wavelets. This is a very practical and extremely

useful wavelet decomposition scheme, since FIR discrete-time filters can be used to implement

them. Wavelet transforms have gained widespread acceptance in signal processing in general,

and in image compression research in particular.

Another contemporary example of the use of an FIR is in computer graphics. Aliasing

effects in computer-generated images are seen in the jagged edges of rendered objects. Anti-

aliasing is a process used by computer graphics applications where pixels are the sum of N

nearest neighbors. This “smooths” the edges of objects by making the edge transitions gradual.

Another benefit of this method is that transient noise or “speckles” are filtered from the image.

An FIR filter is ideally suited for this task.

An FIR filter works by multiplying an array of the most recent n data samples by an array

of constants (called the tap coefficients), and summing the elements of the resulting array. (This

operation is commonly called a dot product.) The filter then inputs another sample of data (which

causes the oldest piece of data to be thrown away) and repeats the process.

The formula for an N tap FIR is Y(n) = X(n − k)H(k)
k= 0
∑ [EQN. 1] where Y(n) is the

filtered value at time equal n and X(n-k) is the sequence of the last N input values and H(k) is

the set of discrete filter values. The result is an output Y

that is a weighted sum of the last N values of X.

Figure 1 at right shows the vector representation

of EQN 1. The figure shows the parallelism inherent in

the algorithm alongside the Altivec operations utilized in

the kernel.

Using a vector of 8 signed integers, a 16-tap FIR

can be unrolled by a factor of 8:1 (a 16 cycle loop in the

scalar implementation can be reduced to a 2 cycle loop in

the Altivec implementation).

3.3 Fixed Point FFT Implementation

The FFT is widely used in signal processing applications, for applications ranging from

spectrum analysis, to sonar beamforming, to engine knock-detection in automotive applications.

We chose to work with a 16 bit fixed-point, radix-2, decimation in frequency, complex Fast

Fourier Transform (FFT) algorithm. Although Altivec includes support for floating point

arithmetic, we chose a fixed-point implementation so that a comparison to the FFT

implementation from [7] is possible.

Although it is beyond the scope of this paper to discuss the theory behind the FFT

algorithm, the details of the particular FFT algorithm that we implemented provide a good

insight into signal processing with Altivec. The primitive operation of a FFT is the 'butterfly.' A

butterfly requires one complex addition, one complex subtraction, and one complex

multiplication operation. Butterflies are performed on different combinations of the input data-

Xn-15 Xn-14
…. Xn-1 Xn

H15 H14
…. H1 H0

X* H15,14
…. H1,0

Yn-15
…. Yn

Figure 1 FIR Algorithm Diagram

x x

+

+ +

vec_msums

vec_sums

points by iterating over the input data with different stride lengths. For a 2N point FFT, it is

necessary to perform N passes over the input data. The first N-2 passes are implemented in a

nested loop that is three levels deep. The butterflies are performed in the inner loop. Pseudo-code

for one butterfly operation is as follows:
1) RETMP = REIN[X] - REIN[Y];
2) IMTMP = IMIN[X] - IMIN[Y];
3) REIN[X] = REIN[X] + REIN[Y];
4) IMIN[X] = IMIN[X] + IMIN[Y];
5) REIN[Y] = ((RETMP * Tw0) - (IMTMP * Tw1)) SHIFTRIGHT scalelog2;
6) IMIN[Y] = ((RETMP * Tw1) + (IMTMP * Tw0)) SHIFTRIGHT scalelog2;

Except for the multiplications, which have a 32-bit result, all the values involved are 16-bits

wide. Since fixed-point arithmetic is being performed, the result of the multiplications must be

shifted right in order to maintain position of the decimal point. The strategy we used to obtain a

speedup in the Altivec version is to compute 4 butterflies at a time in the inner loop. We

implemented the scalar FFT to also perform 4 butterflies in its inner loop in order to keep the

comparison fair to both versions. A separate Ptolemy star provides input to the Altivec FFT star

in the format:

Real0 Imag0 Real1 Imag1 Real2 Imag2 Real3 Imag3

Lines 1-2 of the above pseudo-code are achieved for 4 butterflies at a time simply by doing an

Altivec vector subtract of signed short type vectors. Lines 3-4 are similarly implemented, only

with vector addition. Lines 5-6 require more effort. Since the Altivec ISA doesn’t provide a

fixed-point multiply instruction, we are forced to use a form of multiply that accepts 16 bit

operands and produces a 32 bit result which then is shifted according to the scale factor using a

separate vector operation. The result is that the inner loop requires four vector multiply

instructions to perform the sixteen fixed-point multiply operations necessary to compute four

FFT butterflies.

A different operation is performed in the inner loop for the last two passes over the input

data. The twiddle factors involved in the last two passes are either 1 or –j, which means that the

complex multiplication is no longer necessary. Additionally it is possible to efficiently

implement these last two passes in one inner loop. This optimization was included in both our

scalar and Altivec versions of the FFT.

The last step of the FFT is to reorder the outputs according to a bit-reversed index order.

Initially we reused the code that the Ptolemy VIS FFT [7] used to perform this task. However,

we discovered that calculating the bit-reversed values at run-time was costly; approximately 50%

of the FFT cycles for our Altivec implementation were spent reordering the output buffer. For

this reason, we improved our Altivec star to pre-calculate the bit-reversed ordering, so that the

only work necessary at runtime for a 256 point FFT is a sequence of 120 swap operations.

4 Simulation Results

4.1 FIR Kernel Results

Table 1 shows the results for the FIR kernel tests and the Ptolemy IIR demo. The IIR

demo uses two FIR actors to represent an IIR filter.

The reason we do not see an 8 times

increase in performance, as was theorized in

Section 3.2, is because the number of

instructions used for the packing and

unpacking of the data is on the same scale as

the number of instructions used in the FIR

kernel itself. The actual speedup of the 16-tap

FIR kernel is shown to be 1.34 over the scalar implementation. The speedup for the 16-tap IIR

implementation is 1.59 over the scalar version. The reason the IIR speedup is higher than the

single FIR kernel test speedup is that the IIR utilizes two FIR which means that the packing and

unpacking sections of the code are a much smaller part of the overall code. Ptolemy provided a

visual representation of this partition between the scalar sections and the vectorized sections of

the code.

4.2 FFT Kernel Results

We measured our FFT implementations to have a 39.94 decibel signal to noise ratio using

a floating point FFT as a reference with a complex exponential input signal. Performance results

for the FFT kernel operating in a minimal system similar to the VIS FFT demo (as in Ptolemy

0.7.1 package) are shown in Table 2. The first and second rows correspond to processing a single

Table 1 FIR Simulation Results

IMPLEMENTATION CYCLE
COUNT

INSTR.
COUNT

CODE
SIZE

8-tap Scalar 61,464 52,800 23,496
8-tap Motorola Altivec* 47,522 43,211 24,408
Our 8-tap Altivec 47,065 41,939 24,024
16-tap Scalar 67,068 68,800 23,528
Our 16-tap Altivec 50,083 45,811 24,472
IIR demo (16-tap)
Scalar

96,245 105,953 23,736

IIR demo (16-tap)
Altivec

60,569 56,063 25,192

256 point FFT (with characteristics as described in Section 3), neglecting overhead due to

packing and unpacking scalar values to and from vectors for the Altivec version. In the first row,

the bit-reversed indices for the reordering of the FFT output are calculated at run-time, while

they are computed at compile-time in the second row.

The speedup is noticeably improved when less clock cycles are used to reorder the

outputs, since this is a component of the cycles for both versions of the FFT. The Altivec

speedup for the system is considerably lower than when only the FFT is considered. The

common overhead of generating the source signal and saving it to a buffer is one cause for the

decreased speedup in an analogous fashion to the effect of a slower reordering algorithm being

used in both versions. The vector/scalar data format conversion also causes a portion of the

cycle reduction to be negated, lowering the speedup in the third row. However, a trace of the

pack and unpack stars shows that if the memory accesses for these stars hit in the cache, then the

entire overhead for vector-scalar conversion is approximately 3,200 cycles. This indicates that

the system overhead is the main cause for speedup reduction in the minimal demo system.

The Sun VIS implementation of a 256 point FFT was compared to a floating point FFT

implementation in [7] with a speedup of 1.28. Although it is unclear what scalar FFT

implementation was used for comparison, it should be noted that the FFT star distributed with

Ptolemy’s CGC domain does not include performance optimizations (such as pre-computing

twiddle factors) that are included in the VIS star implementation. Regardless, he performance

enhancement of Altivec over the scalar FFT version certainly compares favorably with the

speedup obtained using Sun’s VIS extensions.

Table 2: FFT Simulation Results

CONFIGURATION SCALAR
CYCLES

ALTIVEC
CYCLES

ALTIVEC
SPEEDUP

SCALAR
INST COUNT

ALTIVEC
INST

COUNT
 FFT Only (basic reorder)
 FFT Only (enhanced reorder)
 Minimal demo (10 iterations)

 85,672
82,431

1,814,663

16,363
11,654

1,230,379

5.24
7.07
1.47

74,915
68,573

1,651,504

13,126
7,063

1,074,377

4.3 Demonstration System Results

Table 3 shows performance results for ten iterations of our fixFIR demo. Our fixFIR demo

system is organized the same as it is in the Ptolemy distribution with the exception that our scalar

and Altivec versions of the FFT and FIR stars are used in place of the standard Ptolemy CGC

stars. The key components of the demonstration are three FIR filters that feed data to three FFT

filters. We believe the speedup numbers for the fixFIR demo are superior to the minimal system

demonstrations for the FFT and FIR for two reasons. Firstly, the overhead of vector to scalar

conversion is lower since the FIR passes data in vector format to the FFT galaxy, effectively

amortizing the cost of the conversion. Secondly, a greater majority of the computation time in

this system is spent in the kernels since the ratio of kernel actors to source actors is higher than in

the minimal demo systems. It is interesting to note that the Altivec version was superior in terms

of code size, dynamic instruction count, and cycle count for this demonstration. Selection of

scheduler did not play a big role in the performance results (in fact the SJS scheduler produced a

schedule identical to the cluster scheduler) probably due to the minor complexity of the graph.

Table 3 fixFIR Simulation Results

SCHEDULER SCALAR
CYCLES
(1000S)

ALTIVEC
CYCLES
(1000S)

ALTIVEC
SPEEDUP

SCALAR
INST. CNT

(1000’S)

ALTIVEC
INST. CNT

(1000’S)

SCALAR
CODE
SIZE

ALTIVEC
CODE
SIZE

ACY
Cluster

4,997.5
4,978.0

1,514.6
1,644.1

3.30
3.03

5,074.0
5,071.1

1,605.6
1,681.5

43,542
43,500

39,244
39,404

5 Conclusion

In summary, the scheduling and partitioning of the vectorized and scalar sections of a program

are paramount in writing effective Altivec code; The Ptolemy environment facilitates the

examination of these two aspects of programming by (1) allowing the flexibility to chose certain

models of computation that ultimately effect the scheduling; and (2) providing a graphical

representation of the vector – scalar partition. Ptolemy’s strengths as a tool for partitioning

systems have been described in previous literature. The authors have shown that these strengths

can be extended to include software vector-scalar partitioning for fast functional design using

NSP with Altivec in the Ptolemy environment

References

1. P. Ranganathan, S. Adve, and N.P. Jouppi, “Performance of Image and Video Processing with General-Purpose
Processors and Media ISA Extensions,” Proc. ACM/IEEE Int. Sym. on Computer Architecture, May 1999, pp.124-
135

2. D. Bearden, D. Caffo et al., “A 780 MHz PowerPC Microprocessor with Integrated L2 Cache”, ISSCC 2000

3. J. Tyler, J. Lent, A. Mather, and H. Nguyen, “Altivec: Bringing Vector Technology to the PowerPC Processor
Family,” 1999 IEEE International Performance, Computing and Communications Conference, Feb. 1999, pp. 437-
44.

4. Altivec Programming Environments Manual, Motorola Inc., 1999.

5. Altivec Programming Interface Manual, Motorola, Inc., 1999.

6. T.M. Conte, P.K. Dubey, M.D. Jennings, R.B. Lee, A. Peleg, S. Rathnam, M. Schlansker, P. Song, and A. Wolfe,
“Challenges to Combining General-Purpose and Multimedia Processors,” IEEE Computer, Dec. 1997, vol.30, no.12
p.33-7.

7. W. Chen, H.J. Reekie, S. Bhave, E.A. Lee, and A. Singh, “Native Signal Processing on the Ultrasparc in the
Ptolemy Environment,” Proc. IEEE Asilomar Conference on Signals, Systems and Computers, Nov. 1996, vol. 2,
pp. 1368-72.

8. R. Bhargava, L.K. John, B.L. Evans, and R. Radhakrishnan, “Evaluating MMX Technology using DSP and
Multimedia Applications,” Proc. ACM/IEEE Int. Sym. on Microarchitecture, Nov. 1998, pp.37-46.

9. A. Kalavade and E. Lee, “A Hardware-Software Codesign Methodology for DSP Applications,” IEEE Design
and Test of Computers, Sep 1993, vol. 103, pp. 16-28.

10. Motorola, “The Altivec Information Source”, http://www.altivec.org

11. Apple, “Apple Developer Connection Download Page”,
http://developer.apple.com/hardware/altivec/download_summary.html

12. Daubechies, I., “Orthonormal Bases of Compactly Supported Wavelets”, Comm. Pure and Applied Math., vol.
41, Nov. 1988, pp. 909-996.

