
Final Report

On

IMPLEMENTATION OF PROCESS
NETWORK IN JAVA

Arnab Basu
And

 Hampapur P. Vijay Kishen

For
EE382C

Embedded Software Systems

May 2000

ABSTRACT

Process networks are networks of sequential processes connected by channels

behaving like FIFO queues. These are used in signal and image processing applications

that need to run in bounded memory for infinitely long periods of time dealing with

possibly infinite streams of data. The requirement to run for long times with limited

memory raises concerns about deadlocking and memory requirements. T. Parks suggests

an algorithm that provides a way of executing these models in bounded memory,

whenever a bounded memory schedule exists. We implemented this algorithm in Java

and devised methods to detect and resolve deadlocks.

Introduction

A Process Network (PN) is a directed graph, comprising of a set of nodes

(processes) connected by a set of directed arcs (FIFO queues). Each process executes a

sequential program. At any given moment this process may read a data token from one of

its input queues, or it may write a data token to one of its output queues. The nodes can

be viewed as concurrent processes that run concurrently and exchange data over the arcs.

This model is well suited for signal processing and image processing applications.

Managing the concurrency in these applications becomes a significant part of these

applications.

In the first section a brief introduction to the different Process Network models is

presented followed by prior work done in this field. In the second section we define our

objectives, discuss the design and implementation issues followed by a brief discussion

of why Java was chosen and in the last section we tabulate the results obtained and a brief

conclusion.

Process Networks

Kahn Process Networks:

In a process network, concurrent processes communicate only through one-way

FIFO channels with unbounded capacity. A process in the Kahn model is a mapping from

one or more input sequences to one or more output sequences, all processes in this model

are monotonic. Each channel carries a possible infinite sequence (a stream) of atomic

data objects (tokens). Each token is written (produced) exactly once, and read

(consumed) exactly once. Writes to the channels are non-blocking, but reads are

blocking. This means that a process that attempts to read from an empty input channel

stalls until the buffer has sufficient token to satisfy the read. The “History” of a channel is

defined as the sequence of tokens that have been written to and read from the channel.

This model can be proved to be determinate, if the histories of the internal and output

channels in the system solely depend on the history of the input channel [1,2]. Even

though this model usually does not require infinite queues it does not guarantee bounded

memory. In a Kahn PN it is not possible to predict whether the model will terminate in

finite time and will be able to execute in finite memory (Turing complete). A deadlock

occurs when all processes are (read) blocked trying to read from their respective

channels.

Parks Model:

Thomas Parks devised a variation to the Kahn PN called Dataflow process

networks [3]. Parks’ model circumvents the problem of infinite queue sizes between

nodes by adding certain rules to Kahn’s model. The model he proposed had three

properties: a) a process is suspended when attempting to read from an empty queue. b) A

process is suspended when attempting to write to a full queue (write block) and c) on

artificial deadlock, increase the capacity of the smallest full queue until its producer can

fire. If we execute a PN program satisfying the above requirements using dynamic

scheduling, there could be two kinds of deadlocks: a) the execution of the PN program

stops if all the processes are suspended reading from empty queue resulting in a true

deadlock. b) The execution stops because some processes are suspended attempting to

write to full queues resulting in an artificial deadlock. Artificial deadlocks can be

resolved by the third rule Parks added to Kahn PN. Parks' model guarantees bounded

execution of a PN program if one exists [3,5].

Prior Work

The process networks domain in Ptolemy II 0.4 [10] models a system as a

network of sequential processes, implemented as Java threads, which communicate using

one-way FIFO queues. It implements Parks bounded scheduling and handles detection of

artificial deadlock. However, it employs a separate Java thread that handles the deadlocks

and resolves them when they arise according to Parks scheduling policies. It differs from

our implementation in that this dedicated Java thread checks at regular intervals for

artificial deadlock in all the threads.

Real time sonar beamforming [4] using Process Networks and POSIX threads

implemented in C++ was also studied for its thread synchronization and deadlock

resolution methods.

Objectives

The objective of this project is to thoroughly study the existing implementations

(both Ptolemy II and computational PN) of PN. Realize the limitations of the current

implementations. Design and implement a PN framework and two different policies for

deadlock detection in Java keeping in mind the limitations of the existing

implementations. Profile our implementation to understand the advantages and

shortcomings of this model.

Design and Implementation

The design of the Process Network framework was done so as to enable other

users to simulate their network in the PN model quickly and effectively. The design is

object oriented and event driven. The main classes are PN, PNQueue, PNGlobals, and

PNBlockedEvent and the interfaces are PNActor and PNBlockedEventListener. The

Class diagram is as shown in figure 1.

The PN class is the main class that creates and initializes the actors and their

associated queues. This class also implements the PNBlockedEventListener interface that

informs it whenever any actor is blocked. This can be used for deadlock detection (when

all the actors are read/write blocked) and also for resolving the deadlock. The main

innovations in this are the two methods of resolving write blocks, which are, 1) Generous

– Here the size of the queue is increased as soon as any actor is write blocked. The size

by which the queue is increased can be varied. 2) Parks – Here the size of the queue

needing the least amount is incremented by that amount when all the actors are blocked

(provided at least one of them is write blocked). The one that is chosen depends on the

flag set in the PNGlobals class.

The PNActor interface is derived from the runnable interface, which allows it to

be run in a Java thread. It also has methods, which allows the PN class to control the

actors. The init() method allows the PN class to specify to the actor its input and output

queues. The getInputQueue() and getOutputQueue() methods of the PNActor interface

allow the PN class access to the actors input and output queues.

The PNQueue class is the class that enables the actors to interact with each other.

This has functions like enqueue() and dequeue() which allow the actors to insert and

remove data from the queue. If the capacity of the queue is reached, while enqueueing the

queue throws a “Write Blocked Event” which the PN class handles. The increaseSize()

method of the PNQueue class allows the main class to increase the size of the queue by

the required size.

Figure 1: Class Diagram for the PN Framework

The PNGlobals class is the class that contains all the constants and flags required

by the framework. The boolean PARKS allows the framework to either use the deadlock

resolution technique of Parks or the generous method where there are no upper limits on

the capacity of the queues. The updateSz() method of this class allows the queue objects

to log their sizes on initiation and completion and the getMem() method allows the main

class to print the initial and final sizes.

The PN class implements the PNBlockedEventListener interface in order to be

able to receive the write, read blocked and also the write and read ok events. This is

useful for implementing Parks’ algorithm of increasing the size of the smallest queue

when all the processes are blocked without the overhead of checking the threads at

regular intervals for blocks.

Java
The implementation of process networks is helped considerably by a language

that allows us to map processes into threads and also has well defined stream

functionality. Java [7] was chosen to implement this because

PNBlockedEvent
Listener

writeBlocked()
writeOk()

readBlocked()
readOk()

PNQueue

increaseSize()
enqueue()
dequeue()
getNum()
getSz()

PNBlockedEvent

getCode()
getReason()
getDeadlockSize()
PNBlockedEvent()
informAll()
addListener()

PNGlobals

updateSz()
getMem()

PNActor

init()
getInputQueue()

getOutputQueue()

PN

allocQue()
initRLThreads()
main()

• It is object-oriented, strongly typed.

• It supports multiple threads and is relatively easy to use.

• Its source code is platform independent (behavior on different platforms depends on

the implementation of the language).

• It provides Exception handling, runtime checking and automatic garbage collection.

The Embedded Java [8] edition allows developers to code embedded applications

using the language. Developers can then configure the core classes in order to come up

with a smaller footprint JDK core to be shipped with the application. This helps in

reducing both the development costs and the time to market.

Results

The Framework was tested with actors taken from the Computational Process

Network source [9] and also the Ptolemy II PN demos [10].

Extensive tests were carried out with the run length encoding and decoding

example (figure 2) of Ptolemy II (version 0.2) since it was more computationally

intensive compared to the injector, copier and verifier actors from the CPN source [9].

The framework was executed using both Parks’ Algorithm and also the generous method

on an NT machine1. The results of the executions are as shown in figure 3 below.

Figure 2: Actors used in the test framework.

1 Pentium III with Windows NT 4.0, 128 MB RAM.

Figure 3: Comparison of Time v/s Initial Capacities of Deadlock resolution Algorithms.

The initial and final queue sizes are also shown, to help us understand the

memory tradeoff between the two algorithms. From the figure it is evident that if the

queue sizes are incremented in small sizes then the overhead to do this affects the

execution time drastically. The execution time of the two methods is comparable when

the capacities of the queue, in the generous method, are increased to twice their original

size. The memory consumption on the queues, though, is huge in the generous method as

compared to the Parks method.

Another factor contributing to the speedup with the Parks algorithm is maybe

because there is a lot of blocking going on between the actors which allows the processor

to schedule the other threads and thereby increase the overall speed. For this particular

setup the occurrence of artificial deadlock was rare but still occurred once or twice per

execution as is evident by the growth of the queues in the figure.

Comparison of Time v/s Initial Capacity

0

20

40

60

80

100

10 100 1000 10000

Initial Capacity

T
im

e
(s

ec
)

Generous(inc cap+1)

Generous(inc 2*cap)

Parks

50/51960

50/84520

50/51

500/27214

500/53300

500/501

5000/56910

5000/71000

50000/50001

50000/85196

50000/140000

5000/5001

Conclusion

We designed and implemented a process networks framework in Java. We

implement a policy that uses multiple threads with blocking reads and works correctly

regardless of the scheduling algorithms used for the threads. To detect and resolve

deadlocks (both artificial and true) we implemented two different policies. We tested the

implementation of the framework and deadlock detection for different open source actors

and on different platforms and profiled the performance of the policies.

References

[1] G. Kahn, “The Semantics of a Simple Language for Parallel Programming”, Proceedings of

International Federation for Information Processing Congress 74, pp. 471-475, North Holland Publishing

Co., Aug 1974.

[2] R.M. Karp and R.E. Miller, “Properties of a Model for Parallel Computations: Determinacy,

Termination, Queueing”, SIAM Journal, Vol. 14, pp. 1390 – 1411, Nov 1966.

[3] E.A. Lee and T.M. Parks, “Dataflow Process Networks”, Proceedings of the IEEE, Vol. 83 No. 5, pp.

773-801, May 1995.

[4] G. E. Allen and B. L. Evans, "Real-Time Sonar Beamforming on Workstations Using Process Networks

and POSIX Threads", IEEE Transactions on Signal Processing, pp. 921-926, March 2000 CA.

[5] T. Parks, “Bounded Scheduling of Process Networks”, Ph.D Thesis, University of California,

Berkeley, CA 94720, Dec 1995.

[6] Richard S, Stevens, Marlene Wan, Peggy Laramie, T M. Parks and E.A. Lee, “Implementation of

Process Networks in Java”, draft 10 July 1997.

http://www.cs.adelaide.edu.au/users/darren/research/literature/

[7] G. Cornell and C. Horstmann, “Core Java”, 1996, Prentice Hall.

[8] Embedded Java, http://java.sun.com/products/embeddedjava/overview.html

[9] Computational Process Networks, http://www.ece.utexas.edu/~allen/CPNSourceCode/index.html

[10] Ptolemy II, http://ptolemy.berkeley.edu/ptolemyII/index.htm

