IMPLEMENTATION OF PROCESS NETWORKS IN

JAVA

Arnab Basu Vijay Kishen

EE382C-9

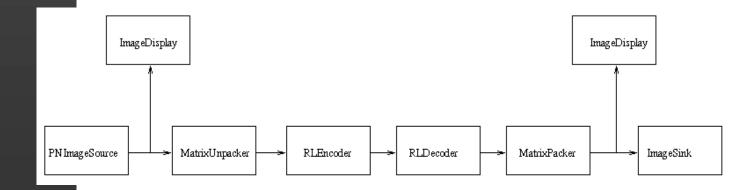
Embedded Software Systems

Instructor: Dr Brian Evans

University of Texas at Austin

Project Goals

- Design and Implementation of a PN Framework
- Deadlock Detection and Resolution
- Test Framework with Actors
- Performance Evaluation


Approach and Implementation

- Queues
 - Enqueue, Dequeue
 - increaseSize
- Event Based Programming
 - EventObject PNBlockedEvent
 - Listeners PNBlockedEventListener
- Actor
 - listens for blocked events
 - deadlock/write block resolution

Test Framework with Actors

 Computational PN Actors - Greg Allen.

The PN Demo from Ptolemy II

Deadlock Resolution and Performance Evaluation

Queue Size Parks	10	100	1000
Time(secs)	319.33	326.25	368.17
Memory	4718	5378	9541
Kahn			
Time(secs)	115.84	150.6	183.32
Memory	5015	5879	15681

Set Up: IBM PC AMDK6 400MHz, 128 Mbytes RAM, OS: WIN98

Conclusions

- Park's PN implementation assures bounded execution but at the cost of execution speed
- Selection of initial capacity of queues is of critical importance can be improved with "tweaking"
- Trade off execution time and memory

References

Ptolemy II design Documentation

http://ptolemy.eecs.berkeley.edu/publications/papers/99/HMAD

Greg Allen's Computational Process
Network Source Code

http://www.ece.utexas.edu/~allen/CPNSourceCode/index.html