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MPEG Audio Layer-3 is a standard for the compression of high-quality 

digital audio.  It has rapidly become very popular and has found widespread 

application in devices such as portable, all-electronic music players and in 

Internet audio.  Currently, many algorithms for Layer-3 audio encoding are used.  

Their performances vary greatly, but the average encoding rate is approximately 

one second of digital audio encoded per second on a typical Windows-based 

desktop computer.  While this rate is acceptable to most personal computer 

users, some applications demand a much higher encoding rate.  For example, a 

typical radio station has thousands of CDs, each containing up to 74 minutes of 

digital audio.  If the radio station decides to convert all of its audio to MPEG 

Layer-3, 74 minutes to encode each CD is unacceptable.  The goal of this project 

is a formal modeling of an MP3 encoder, which will expose the parallelism in the 

encoding algorithm, facilitating the scaling of the algorithm to a multi-processor 

implementation.  Much greater throughput is achievable by scaling the algorithm 

to multiple processors. 
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MPEG (Moving Picture Experts Group) Audio Layer-3 [1], more commonly 

known as “MP3,” is part of the set of standards known as “MPEG-1,” which was 

approved by the International Organization for Standardization (ISO) in 

November 1992 [2].  The primary focus of this standard is the compression of 

high-quality, synchronized audio and video to a data rate of approximately 1.5 

Mbps [3].  This standard consists of three main parts: system, video, and audio.  

Within the audio portion of the standard, there are three “layers.”  Layer-3 

provides the highest compression at a given sound quality.  Table 1 [4] shows 

some of the common compression ratios available using MP3 compression 

based on the relative quality of the resulting audio. 

 

Sound Quality Bandwidth Mode Bit-Rate Compression Ratio 
Telephone 2.5 kHz mono 8 kbps 96:1 
AM Radio 7.5 kHz mono 32 kbps 24:1 
FM Radio 11 kHz stereo 56 - 64 kbps 26:1 - 24:1 
Near CD 15 kHz stereo 96 kbps 16:1 

CD Quality Over 15 kHz stereo 112+ kbps Up to 12:1 
 
Table 1 :  MP3 Compression ratios for various output sound qualities. 

 

In MP3, as with other source coding standards, the decoder is rigidly 

defined, whereas great flexibility exists in the design of the encoder.  Many 

“freeware,” “shareware,” and commercial encoders exist, some of which are open 

source.  The formal model will be based on the L.A.M.E. encoder [5], because it 

is open source, freely distributable, efficient, and produces good sound quality.  

As with most signal processing applications, the encoding algorithm contains a 



large amount of parallelism.  A major benefit of building the formal model is the 

exposure of this parallelism, because this is what will make the algorithm 

scalable to multiple processors. 
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The formal model of the MPEG Layer-3 encoder will be a dataflow graph 

consisting of various blocks, or “actors,” each containing a portion of the L.A.M.E. 

source code.  The actors will exist within the SDF (Synchronous Data Flow) 

model of computation.  In this model, or “domain,” each actor has a fixed number 

of input and output ports.  Each of these ports receives or sends a fixed number 

of “tokens” of data, such as a single integer or floating-point number, or a matrix 

of values.  There is no notion of time within this domain.  This domain is well-

suited to the modeling of an MP3 encoder, because input audio is processed 

sequentially, 576 samples at a time, as quickly as possible, with no consideration 

of time or other factors that may be present in other domains. 

In addition to exposing the inherent parallelism, the formal modeling also 

allows retargeting of the algorithm to different implementations.  Therefore, it will 

be possible to apply the algorithm, which was originally a C program written to 

run on a single general-purpose processor, to a wide variety of platforms, such 

as a multiple processor workstation or custom hardware containing multiple 

DSPs.  Converting the C code to C++ and importing it into SDF actors introduces 

additional processing overhead, because the domain must provide a means for 

communication between actors.  In the original algorithm, this was simply done 



by function calls.  Scheduling the algorithm on multiple processors also 

introduces overhead.  This is due to the fact that processors must spend time 

sending and receiving data.  However, the nature of the algorithm is such that the 

amount of inter-actor and inter-processor communication is very small.  This is 

the main reason that a formal model of the encoder is beneficial. 
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Figure 1 : Block diagram representation of an MP3 encoder. 

 

 

The formal model was constructed using Ptolemy [6].  Layer-3 is a very 

complex encoding scheme; the actual ISO standard [2] is nearly 200 pages long, 

and the L.A.M.E. encoder source is approximately 20,000 lines in length.  

Unfortunately, it was not possible to implement a fully functional encoder due to 

this complexity and the timing constraints of the project.  Figure 2 shows a 

screen shot of the implemented model. 
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Figure 2 :  The model 

 

The model includes the most important filtering actors.  The model does not 

include the final stages of the algorithm, which involve noise allocation and bit 

stream formatting to produce the actual MP3 output file.  These portions of the 

algorithm do not involve a large amount of parallel data and, therefore, would 

benefit least from formal modeling.  A truly complete model of an encoder would 

include these blocks at the far right of the graph, in place of the two red blocks in 

Figure 2.  These red blocks are currently actors that plot the output of the filters 

in the frequency domain. 



The top and bottom halves of the graph represent the two channels (left and 

right) of audio.  The actors on the far left are source actors, included for the 

purpose of simulation.  They generate an input signal composed of three sine 

waves at different frequencies with two Gaussian random noise sources added.  

This input provides a wide range of frequency content, similar to what CD-quality 

music might contain. 

Immediately to the right of the source actors is the polyphase filterbank.  

Barely visible in Figure 2 are the delays (shown in green) on each arc before 

each of the 18 filters in the filterbank.  Each of these delays is a different amount, 

so that the input to each filter is the same, but phase shifted by 32 samples.  As 

described mathematically in [8], each of the 18 filters produces one sample in 

each of the 32 frequency bands.  The large block following the polyphase filter 

rearranges the samples into 32 separate frequency bands, each consisting of 18 

samples. 

Each band is then operated on by a MDCT (Modified Discrete Cosine 

Transform) actor.  This actor requires additional input data from the 

psychoacoustic model.  Both the polyphase filterbank and the MDCT operations 

are lossy, but the quality lost due to the MDCT is insignificant when compared to 

the polyphase filterbank [9]. However, the MDCT introduces “aliasing,” which is 

the result of the overlapping of the frequency subbands.  The next column of 

actors performs the aliasing reduction butterfly, as described in [7].  The butterfly 

actor also requires data from the psychoacoustic model. 



In looking at Figure 2, it is apparent that the model does, in fact, expose a 

large amount of parallelism.  All 18 of the polyphase filters can operate on the 

input data simultaneously.  The rest of the actors can operate on the frequency 

subbands independently of each other.  Therefore, there is a tremendous 

potential for scheduling onto multiple processors.  One of the fundamental laws 

in parallel computing is known as Amdahl’s Law [10], and it helps to illustrate why 

this algorithm is a good candidate for parallel execution. 

   

• Let α represent the fraction of the algorithm which can be executed in 

parallel. 

• Let P be the total number of processors. 

• SP is then the gain in performance, or “speed up,” due to using P 

processors, and is given by the following formula: 

 

1 
SP =  α/P + (1 - α) 

 

 

Figure 3 : Amdahl’s Law 



Figure 3 shows the speed-up, S, plotted versus α.  The curve shifts up and 

to the left as more processors are added.  The important aspect of the graph is 

that α must be large to obtain a significant improvement by increasing P.  This is 

because applications with little parallelism must waste large amounts of time 

communicating between processors, effectively canceling the benefits of using 

the additional processors.  As demonstrated by this project, the MP3 encoding 

algorithm has a very high amount of parallelism, α. 
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The model created for this project comprises a large portion of a fully 

functional MP3 encoder.  Future work on this model should include the addition 

of the final stages of the encoder: noise allocation and bit stream formatting.  

This would allow the simulation to produce an actual MPEG Layer-3 output file.  

Also, multiprocessor scheduling techniques should be investigated – Ptolemy 

has the capability to schedule SDF graphs onto multiple processors.  To do this 

effectively, the user must allocate enough delay on the appropriate arcs in order 

to maximize the utilization of each processor.  Further research in this area could 

determine the optimum combinations of buffer sizes and number of processors, 

and possibly even further division of the blocks into smaller actors.  Finally, the 

L.A.M.E. source code includes several NSP (native signal processing) kernels for 

performing some of the most processor-intensive math routines.  The encoder 

could be benchmarked on various architectures, using these kernels, to 

determine the merit of employing NSP in MP3 encoding. 
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