
Modeling of an MPEG Audio Layer-3 Encoder in Ptolemy

Patrick Brown
EE382C – Embedded Software Systems

May 10, 2000

$EVWUDFW

MPEG Audio Layer-3 is a standard for the compression of high-quality

digital audio. It has rapidly become very popular and has found widespread

application in devices such as portable, all-electronic music players and in

Internet audio. Currently, many algorithms for Layer-3 audio encoding are used.

Their performances vary greatly, but the average encoding rate is approximately

one second of digital audio encoded per second on a typical Windows-based

desktop computer. While this rate is acceptable to most personal computer

users, some applications demand a much higher encoding rate. For example, a

typical radio station has thousands of CDs, each containing up to 74 minutes of

digital audio. If the radio station decides to convert all of its audio to MPEG

Layer-3, 74 minutes to encode each CD is unacceptable. The goal of this project

is a formal modeling of an MP3 encoder, which will expose the parallelism in the

encoding algorithm, facilitating the scaling of the algorithm to a multi-processor

implementation. Much greater throughput is achievable by scaling the algorithm

to multiple processors.

&RQWH[W

MPEG (Moving Picture Experts Group) Audio Layer-3 [1], more commonly

known as “MP3,” is part of the set of standards known as “MPEG-1,” which was

approved by the International Organization for Standardization (ISO) in

November 1992 [2]. The primary focus of this standard is the compression of

high-quality, synchronized audio and video to a data rate of approximately 1.5

Mbps [3]. This standard consists of three main parts: system, video, and audio.

Within the audio portion of the standard, there are three “layers.” Layer-3

provides the highest compression at a given sound quality. Table 1 [4] shows

some of the common compression ratios available using MP3 compression

based on the relative quality of the resulting audio.

Sound Quality Bandwidth Mode Bit-Rate Compression Ratio
Telephone 2.5 kHz mono 8 kbps 96:1
AM Radio 7.5 kHz mono 32 kbps 24:1
FM Radio 11 kHz stereo 56 - 64 kbps 26:1 - 24:1
Near CD 15 kHz stereo 96 kbps 16:1

CD Quality Over 15 kHz stereo 112+ kbps Up to 12:1

Table 1 : MP3 Compression ratios for various output sound qualities.

In MP3, as with other source coding standards, the decoder is rigidly

defined, whereas great flexibility exists in the design of the encoder. Many

“freeware,” “shareware,” and commercial encoders exist, some of which are open

source. The formal model will be based on the L.A.M.E. encoder [5], because it

is open source, freely distributable, efficient, and produces good sound quality.

As with most signal processing applications, the encoding algorithm contains a

large amount of parallelism. A major benefit of building the formal model is the

exposure of this parallelism, because this is what will make the algorithm

scalable to multiple processors.

2EMHFWLYHV

The formal model of the MPEG Layer-3 encoder will be a dataflow graph

consisting of various blocks, or “actors,” each containing a portion of the L.A.M.E.

source code. The actors will exist within the SDF (Synchronous Data Flow)

model of computation. In this model, or “domain,” each actor has a fixed number

of input and output ports. Each of these ports receives or sends a fixed number

of “tokens” of data, such as a single integer or floating-point number, or a matrix

of values. There is no notion of time within this domain. This domain is well-

suited to the modeling of an MP3 encoder, because input audio is processed

sequentially, 576 samples at a time, as quickly as possible, with no consideration

of time or other factors that may be present in other domains.

In addition to exposing the inherent parallelism, the formal modeling also

allows retargeting of the algorithm to different implementations. Therefore, it will

be possible to apply the algorithm, which was originally a C program written to

run on a single general-purpose processor, to a wide variety of platforms, such

as a multiple processor workstation or custom hardware containing multiple

DSPs. Converting the C code to C++ and importing it into SDF actors introduces

additional processing overhead, because the domain must provide a means for

communication between actors. In the original algorithm, this was simply done

by function calls. Scheduling the algorithm on multiple processors also

introduces overhead. This is due to the fact that processors must spend time

sending and receiving data. However, the nature of the algorithm is such that the

amount of inter-actor and inter-processor communication is very small. This is

the main reason that a formal model of the encoder is beneficial.

,PSOHPHQWDWLRQ DQG 0RGHOLQJ

Figure 1 : Block diagram representation of an MP3 encoder.

The formal model was constructed using Ptolemy [6]. Layer-3 is a very

complex encoding scheme; the actual ISO standard [2] is nearly 200 pages long,

and the L.A.M.E. encoder source is approximately 20,000 lines in length.

Unfortunately, it was not possible to implement a fully functional encoder due to

this complexity and the timing constraints of the project. Figure 2 shows a

screen shot of the implemented model.

Time to
Frequency
Mapping
Filter Bank

Noise
Allocation,
Quantizer,
and Coding

Bit Stream
Formatting

Psychoacoustic
Model

PCM
Audio
Input

Encoded
Bit Stream

Figure 2 : The model

The model includes the most important filtering actors. The model does not

include the final stages of the algorithm, which involve noise allocation and bit

stream formatting to produce the actual MP3 output file. These portions of the

algorithm do not involve a large amount of parallel data and, therefore, would

benefit least from formal modeling. A truly complete model of an encoder would

include these blocks at the far right of the graph, in place of the two red blocks in

Figure 2. These red blocks are currently actors that plot the output of the filters

in the frequency domain.

The top and bottom halves of the graph represent the two channels (left and

right) of audio. The actors on the far left are source actors, included for the

purpose of simulation. They generate an input signal composed of three sine

waves at different frequencies with two Gaussian random noise sources added.

This input provides a wide range of frequency content, similar to what CD-quality

music might contain.

Immediately to the right of the source actors is the polyphase filterbank.

Barely visible in Figure 2 are the delays (shown in green) on each arc before

each of the 18 filters in the filterbank. Each of these delays is a different amount,

so that the input to each filter is the same, but phase shifted by 32 samples. As

described mathematically in [8], each of the 18 filters produces one sample in

each of the 32 frequency bands. The large block following the polyphase filter

rearranges the samples into 32 separate frequency bands, each consisting of 18

samples.

Each band is then operated on by a MDCT (Modified Discrete Cosine

Transform) actor. This actor requires additional input data from the

psychoacoustic model. Both the polyphase filterbank and the MDCT operations

are lossy, but the quality lost due to the MDCT is insignificant when compared to

the polyphase filterbank [9]. However, the MDCT introduces “aliasing,” which is

the result of the overlapping of the frequency subbands. The next column of

actors performs the aliasing reduction butterfly, as described in [7]. The butterfly

actor also requires data from the psychoacoustic model.

In looking at Figure 2, it is apparent that the model does, in fact, expose a

large amount of parallelism. All 18 of the polyphase filters can operate on the

input data simultaneously. The rest of the actors can operate on the frequency

subbands independently of each other. Therefore, there is a tremendous

potential for scheduling onto multiple processors. One of the fundamental laws

in parallel computing is known as Amdahl’s Law [10], and it helps to illustrate why

this algorithm is a good candidate for parallel execution.

• Let α represent the fraction of the algorithm which can be executed in

parallel.

• Let P be the total number of processors.

• SP is then the gain in performance, or “speed up,” due to using P

processors, and is given by the following formula:

1
SP = α/P + (1 - α)

Figure 3 : Amdahl’s Law

Figure 3 shows the speed-up, S, plotted versus α. The curve shifts up and

to the left as more processors are added. The important aspect of the graph is

that α must be large to obtain a significant improvement by increasing P. This is

because applications with little parallelism must waste large amounts of time

communicating between processors, effectively canceling the benefits of using

the additional processors. As demonstrated by this project, the MP3 encoding

algorithm has a very high amount of parallelism, α.

)XUWKHU :RUN

The model created for this project comprises a large portion of a fully

functional MP3 encoder. Future work on this model should include the addition

of the final stages of the encoder: noise allocation and bit stream formatting.

This would allow the simulation to produce an actual MPEG Layer-3 output file.

Also, multiprocessor scheduling techniques should be investigated – Ptolemy

has the capability to schedule SDF graphs onto multiple processors. To do this

effectively, the user must allocate enough delay on the appropriate arcs in order

to maximize the utilization of each processor. Further research in this area could

determine the optimum combinations of buffer sizes and number of processors,

and possibly even further division of the blocks into smaller actors. Finally, the

L.A.M.E. source code includes several NSP (native signal processing) kernels for

performing some of the most processor-intensive math routines. The encoder

could be benchmarked on various architectures, using these kernels, to

determine the merit of employing NSP in MP3 encoding.

5HIHUHQFHV

1. “The Moving Picture Experts Group Home Page,” http://www.mpeg.org/MPEG.

2. “Coding of Moving Pictures and Associated Audio for Digital Storage Media at Up to

About 1.5Mbps – Part 3: Audio,” ISO/IEC 11172-3, Nov. 1991.

3. Davis Pan, “A Tutorial on MPEG/Audio Compression,” IEEE Multimedia Journal, vol. 2,

no. 2, Summer 1995, pp. 60-74.

4. “MPEG Audio Layer-3,” Fraunhofer-Gesellschaft Institute, http://www.iis.fhg.de.

5. “The L.A.M.E. Project,” http://www.sulaco.org/mp3.

6. “The Ptolemy Project,” University of California-Berkeley,

http://ptolemy.eecs.berkeley.edu.

7. T Sporer, K Brandenburg, B Elder, “The Use of Multirate Filterbanks for Coding of High-

Quality Digital Audio,” 6th European Signal Processing Conference, Amsterdam, June

1992, vol. 1, pp. 211-214.

8. M Kumar, M Zubair, “High Performance Software Implementation of MPEG Audio

Encoder,” 1996 IEEE International Conference On Acoustics, Speech, and Signal

Processing, paper no. 1628, pp. 1049-1050.

9. J Enerstam, J Peman, “Hardware Implementation of MPEG/Audio Real-Time Encoder,”

Master’s Thesis, Lulea University of Technology, Sep. 1998.

10. G M Amdahl, “Validity of the Single-Processor Approach to Achieving Large Scale

Computing Capabilities,” American Federation of Information Processing Societies

Conference Proceedings, vol. 30, Atlantic City, N.J., Apr. 1967, pp. 483-485.

