
Optimization of Vertical and Horizontal Beamforming Kernels

on the PowerPC G4 Processor with AltiVec Technology

EE382C: Embedded Software Systems
Final Report

David Brunke

Young Cho
Applied Research Laboratories:

The University of Texas at Austin

Abstract

Real-time digital sonar beamforming is a computationally intensive algorithm that has been

implemented in the past primarily in custom embedded hardware. With recent advancements in native

signal processing extensions for general-purpose processors, it is possible to implement sonar

beamforming using off-the-shelf hardware. A previous implementation on a Sun UltraSPARC

multiprocessor suggests a very promising platform for transitioning such applications to general-purpose

systems. In this paper, we continue the previous implementation by modifying the beamforming kernels

to use AltiVec, a new native signal processing extension from PowerPC. AltiVec is a Single Instruction

Multiple Data (SIMD) architecture capable of executing up to four 32-bit floating-point multiply and

accumulate (MAC) operations per instruction. Although our benchmarks show some performance

increase using AltiVec, there are some problems that prevented us from obtaining better results. First of

all, the compiler, GCC, is not properly optimized. Second, a cache architectural problem caused the

cache to be used inefficiently. Third, there is overhead in aligning the data properly into the registers.

Overall, we believe that despite the lack of a significant speedup, AltiVec is promising for these types of

applications.



1

1.0 Introduction

In last few decades, the Digital Signal Processor (DSP) market has grown substantially to meet the

demand of the high performance signal processing community. Such growth in the signal processing

market has allowed the general computing communities to incorporate the technology into their

applications. As a result, general-purpose processors began to embed signal processing architectures into

their own processing cores to provide economic system solutions for computationally intensive

applications [1].

Real-time digital sonar beamforming is one such application once only feasible on custom

hardware that can now be successfully implemented on commercial, off-the-shelf computers with native

signal processing extensions. One recent implementation uses a commercial general-purpose 8-way

symmetric multiprocessor (SMP) workstation from Sun Microsystems [2]. The beamforming kernels

exploit the inherent data parallelism by using Single Instruction Multiple Data (SIMD) arithmetic

operations available in the Visual Instruction Set (VIS) extensions to the UltraSPARC processor. By

using a sixteen 333-MHz UltraSPARC Enterprise server, a real-time beamformer delivering 4 GFLOPS

on 160 MB/s of streaming data was realized.

The goal of our research is to further explore the effectiveness of the embedded extensions by

optimizing and assessing the performance of beamforming kernels using AltiVec from PowerPC, which is

one of the newest native signal processing instruction sets. We also plan to analyze the results obtained

from the two embedded signal processing extensions to assess the architectural advantages and

disadvantages.

2.0 Native Signal Processing Extensions

Many high performance embedded applications are programmed on systems with a few general-

purpose processors as system controllers with a larger number (possibly hundreds) of specialized DSPs to



2

perform scientific calculations. However, this type of system has many disadvantages due to different

programming platforms and unequal performance advances in the two separate technologies. Therefore,

many manufacturers of high performance general-purpose processors are integrating sets of native signal

processing instructions onto their processor cores to offer solutions requiring fewer processors.

2.1 UltraSPARC VIS

The Visual Instruction Set (VIS) is a set of signal processing instructions based on the SIMD

architecture. The floating-point data of the UltraSPARC processor core is enhanced with graphics integer

units to support VIS. With 50 new CPU and 64-bit registers, VIS can perform integer operations on

multiple words with a single instruction. Thus, VIS can achieve up to four times speedup with 8-bit by

16-bit fixed-point multiplication using the SIMD arithmetic logic [4].

2.2 PowerPC AltiVec

The AltiVec vector unit is sectioned into a separate sub-unit of the processor as are the floating-

point and integer units. As shown in Fig. 1, the vector unit has its own 32 by 128-bit wide register file for

use with 150 new floating point and integer SIMD instructions. It allows execution of up to four 32-bit

floating point MAC operations per instruction [5]. AltiVec is potentially a much more powerful signal

processing extension than VIS due to its greater logic resources.

Fig. 1: Block Diagram of PowerPC AltiVec Unit Architecture

128 bit register InB

128 bit register Out

128 bit register InA

128 bit register InC

32 by 128 bit Vector Register File

Vector Logic Unit



3

3.0 Beamforming Algorithm

Conventional sonar beamformers use the signals collected from sensor elements to determine from

what direction the sonar signal returns after deflecting off of an object. This conventional horizontal

time-domain beamforming algorithm consists of appropriately delaying and summing the weighted

outputs of an array of sensor elements. The weighting of the sensor outputs helps to improve the spatial

response [3].

The problem with this conventional approach is that it requires a sample rate that is several times

the Nyquist rate for adequate time delay resolution. This is undesirable because it requires additional

bandwidth for the overall system. A practical solution employs digital interpolation with Finite Impulse

Response (FIR) interpolation filters to achieve a satisfactory time delay resolution [3]. This solution is

shown in Fig. 2. Analog data is sampled at a given sampling interval, and then followed by interpolation,

time delay, and summation.

3.1 Previous Implementation

The previous implementation we are building upon adds vertical beamforming to the approach in

[3] to enable projection of a 3-D underwater image [2]. In addition, the interpolation for the horizontal

beamforming kernel is simplified by using a two-point FIR filter for the digital interpolation. A two-point

FIR filter is possible without a critical loss of resolution because the sampling rate is set to two times the

Nyquist sampling rate. The overall system description is shown in Fig. 3.

Fig. 2: Digital Interpolation Beamformer

Sensor

Array

Interpolate

·

·

·

t1

tN

å Beam

Time Delay

Interpolate
·

·

·



4

The vertical beamformer computes three sets of data, each of which is sent to a horizontal

beamformer. Thus, three dot products are computed with each column of 10 vertical transducers (staves)

and three coefficient vectors; each contributes to the vertical resolution. In the benchmark results, the

vertical kernel using UltraSPARC VIS (205 MFLOPS) almost triples the performance given by the non-

VIS integer implementation (71 MFLOPS).

4.0 New Implementation

Using recent releases of G4 PowerPC processors with AltiVec and the AltiVec enabled C

compiler, we confirm the evaluations assessed with various simulators [7]. We evaluate the results of the

vertical and horizontal beamforming kernels programmed with AltiVec on the G4 processor in a real-time

working environment.

4.1 Platform

We implement the kernels in the Linux operating system using the GCC compiler provided to us

by Motorola, which can compile code with AltiVec instructions in C/C++. Due to the structural

differences between the VIS and AltiVec instruction architectures, we change the format of the data to

fully utilize the AltiVec extensions for the kernels [5,8,9].

4.2 Process Network Programming Model

Under the process network domain, the output of the vertical beamformer is a queue. In the

previous implementation, the queue was allocated contiguously with each set of stave samples addressed

Vertical

Beamformer

40 MB/s

32 MB/s
V

32 MB/s

32 MB/s

Sensor

Elements H

H

H

Horizontal

Beamformers

24 MB/s

24 MB/s

24 MB/s

Three Staves

Fan 1 Beam

Fan 2 Beam

Fan 3 Beam

Figure 3: Block Diagram of the 3-D sonar beamformer

40 MB/s

40 MB/s

40 MB/s

queues



5

consecutively according to the time at which they were sampled. Since the two-point interpolation in the

horizontal beamformer uses the samples collected from a stave two consecutive times, the original queue

structure would require the sample points to be referenced with two different addresses distanced by the

size of a stave. By transposing the queue, the samples for each stave become contiguous according to the

sampling times. Such an arrangement would allow each vector load instruction to load up to four samples

required for the calculation at once. We refer to the transposing of the queue as corner turning.

Even though the corner turning may benefit the vector load, it introduces a few problems. First,

the index calculation becomes more complex, requiring the queue size to be added or subtracted to

address the adjacent set of stave samples. Second, due to the necessary arrangement of the queue in

memory, it is restricted from growing dynamically. The effect of the first problem is inevitable without

significant change in our data structure. However, the effect of the second problem disappears when we

allocate the queue to be large enough to hold all the data at one time. It is possible to allocate such a

queue size due to the well-known behavior of the real-time system with maximum input data bandwidth.

4.3 Beamforming Kernels

In the vertical beamformer, we compute three dot products, each of which must be converted to

floating-point before it is sent off to the horizontal beamformer. We perform the dot product of eight 16-

bit elements by using a vector multiply accumulate followed by a vector sum operation. To accommodate

the horizontal beamforming kernel, the output is stored into a corner turned queue. Thus, the resulting

code for the corner turning increased the necessary calculation for the queue address. We also add loop

unrolling to the kernel to improve the performance, which requires using the vector permute operation to

rearrange the data appropriately.

The horizontal beamformer then loads the corner turned samples using the vector load operation.

Although the number of loads are reduced due to the AltiVec vector instructions, the alignment



6

constraints for the instructions require a greater number of vector permutations to be done on the loaded

samples. Once the correct samples are arranged in the vector register, a powerful floating-point vector

multiply and accumulate instruction is executed on four samples at once allowing up to eight times the

speedup from the standard floating point instructions. The results are once again placed in a corner turned

output queue of the horizontal beamformer.

5.0 Results

Fig. 4a shows the performance for the vertical kernel, where the previous implementation with

VIS (as shown in white) is also shown as a comparison. Although we did implement loop unrolling in the

kernel, we were unable to verify these results, so we do not show them here. However, our preliminary

results indicate a significant speedup with loop unrolling with AltiVec implementations over the VIS in

vertical kernel.

For the horizontal kernel, performance is measured from several versions of loop unrolled kernels.

Each versions of kernels are written to evaluate the effects of different types of queues, compilers, and

platforms. Fig. 4b shows the optimal performance measurements in terms of operations per instruction

cycle of each kernel. Due to different optimizations used in compilers and the processor architecture,

each version of the kernels gave different optimal number of loop unrolling iterations for the generated

code.

Fig 4: Optimum Kernel Performance Graphs

Floating Point Operations per Cycle

G4 450 MHz non-AltiVec Linux/GCC

G4 450 MHz AltiVec Linux/GCC 63K Not CT

G4 450 MHz AltiVec Linux/GCC 64K Not CT

G4 450 MHz non-AltiVec Linux/GCC 63K CT

G4 450 MHz non-AltiVec Linux/GCC 64K CT

UltraSparc 333 MHz Solaris/GCC

UltraSparc 333MHz Solaris/SunCC

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

a) b)



7

5.1 Analysis

As performance results indicate, compiler plays a large role in the performance. GCC is a generic,

non-commercial version of the compiler that does not consider many potential architectural advantages of

each processor. Even with optimization and architectural tuning flags, GCC compiled code performed as

much as 50% slower than the SunCC compiled code on the same machine.

While adding the VIS to the vertical kernel increased the performance by two to three folds,

adding the AltiVec instructions to the kernels decreased the speed. Although such results were not

expected, the most likely source of the explanation based on the measurement is that the maturity of the

compilers. While GCC is not tuned for any specific processor architecture, SunCC from Sun is very

successful in generating code that efficiently utilizes the advantages of the UltraSPARC processor. In

fact, the decrease in performance for AltiVec is most likely due to lack of optimization in the compiler to

architecture specific nature of the native signal processing extensions.

The results show that there also was slight decrease in performance in the corner turned version of

the kernels. One plausible, yet unverified, reason for this slow down is because of the extra pointer

arithmetic when determining the address of the output. In addition, as in the case of the horizontal kernel,

there could be a problem with the utilization of the cache. The queue size may effect whether or not

there are many cache misses.

Lastly, about 20% difference in performance was evident when the memory allocated for the

queue in PowerPC was different. The result show that 64 KB aligned queue performed poorly compared

to the 63KB aligned queue in PowerPC, whereas UltraSPARC performed best with the 64KB align queue.

This is indication of cache architectural differences between UltraSPARC and PowerPC. It is also

depended on the compilers� decision in how to use the available resources.



8

6.0 Conclusion

This project benchmarks a computationally intensive algorithm, sonar beamforming, on the

AltiVec native signal-processing technology. We found several issues that kept us from getting the

speedup we expected. First of all, the compiler, GCC, is not properly optimized. It did not provide the

kind of performance we need to fully exploit the AltiVec architecture. Second, the cache architectural

problem caused the cache to be used inefficiently. This was seen with the corner turning for the vertical

kernel, as there was most likely some performance loss because of the cache misses. Third, we verify that

with the horizontal kernel there is overhead in aligning the data properly into the registers, which is done

with the vector permute instruction. Efficient methods to deal with this issue are needed to yield a

performance boost. Overall, we believe that despite the lack of a significant speedup, AltiVec is

promising for these types of applications.

7.0 References

[1] J. Bier, "DSP on General Purpose Processors," MicroDesign Resources Dinner Meeting Slides,

Berkeley Design Technology, Inc., Jan. 1997.
[2] G. E. Allen and B. L. Evans, "Real-Time Sonar Beamforming on Workstations Using Process

Networks and POSIX Threads." IEEE Trans. on Signal Processing, vol. 48, no. 3, pp. 921-926,
March 2000.

[3] R. G. Pridham and R. A. Mucci, "A Novel Approach to Digital Beamforming." Journal Acoustical
Society of America, vol. 63, no. 2, pp. 425-434, Feb. 1978.

[4] Sun Microsystems, "VIS Instruction Set User's Manual."
http://solutions.sun.com/embedded/databook/pdf/manuals/805-1394-01.pdf.

[5] AltiVec Programming Environment/Interface Manual, Motorola Inc., 1998.

[6] G. E. Allen, B. L. Evans, and L. K. John, "Real-Time High-Throughput Sonar Beamforming

Kernels Using Native Signal Processing and Memory Latency Hiding Techniques", Proc. IEEE
Asilomar Conf. on Signals, Systems, and Computers, Oct. 25-28, 1999, vol. I, pp. 137-141, Pacific

Grove, CA.
[7] H. Nguyen and L. K. John, "Exploiting SIMD parallelism in DSP and multimedia algorithms

using the AltiVec technology." Proc. ACM Int. Conf. on Supercomputing, June 20 - 25, 1999, pp.

11-20, Rhodes Greece.

[8] Motorola, "AltiVec Technology." http://www.mot.com/AltiVec.
[9] AltiVec Information Source. http://www.altivec.org.

[10] J. D. Allen and D. E. Schimmel, "Issues in the Design of High Performance SIMD Architectures."
IEEE Trans. on Parallel and Distributed Systems, vol. 7, pp. 828-839, Aug. 1996.


