System Modeling and Software Implementation of MPEG-4 Video Encoder

Chen He and Shi Zhong
MPEG-4 Video Encoder

- Supports content-based interactivity, high compression, and/or universal accessibility and portability
- Overall structure

- A VOP encoder consists of shape coding (for arbitrarily shaped VOs), motion estimation/compensation, and DCT-based texture coding
MPEG-4 VOP Encoder Diagram
Candidate System-level Models

- **SDF** - used by Kim and Evans to model a generic video codec system

- **Petri-net** - a modeling tool for describing systems with concurrent, distributed, and parallel characteristics employed in the software-based MPEG-4 encoder implementation by He et al.

- **Process Network** - concurrent model of computation
 - correctness, determinacy, complete and bounded execution (bounded scheduling proposed by Parks)
 - reliable formal design methodology for organizing and developing real-time multiprocessor software
 - existing work done by Allen et al in real-time beamformer implementation
 - our choice
Software-based Implementation

- **Scheduling for multi-processors** - to exploit the control parallelism (VOP segmentation)

- **Dynamic data partitioning** - to exploit the data parallelism (dividing the work load MacroBlock-wisely)

- **Our plan**
 - To use process networks to model the encoder system
 - To maximize the parallelism by dividing the tasks and balancing the load in each processing node
 - To demonstrate the feasibility of implementing a real-time MPEG-4 encoder on workstations using the framework constructed by Allen et al