
System Modeling and Software-based Implementation

of MPEG-4 Video Encoder

Final Report

For

EE382C Embedded Software Systems

Prof. B. L. Evans

by

Chen He and Shi Zhong

May 10, 2000

Abstract

The MPEG-4 standard provides for content-based interactivity, high compression, and/or

universal accessibility and portability of audio and video contents. Due to its representation of an

audiovisual system in terms of distinct objects (except the simple profile used for wireless video

communication) and flexible configuration structure, any MPEG-4 hardware implementation is

likely to be application specific. Therefore, software-based implementation that allows flexibility

and portability seems to be a natural and viable option.

In this report, we model the MPEG-4 video encoder using Computational Process Networks

(CPN), which is a deterministic and concurrent computation model, and implement a scalable

software-based encoder in C++ and Portable Operating System Interface (POSIX) threads under

the framework proposed by Allen and Evans for constructing high-throughput real-time signal

processing applications. The performance of the original sequential implementation and our

concurrent implementation of the MPEG-4 simple-profile video encoder are compared on a

single-processor workstation. We find that the concurrent implementation is faster since the

benefits from concurrent execution of CPN nodes outweigh the overheads created by

C++/Pthread programming. Our approach is scalable to multiprocessor environment, which

makes the software-based real-time MPEG-4 video encoder on multiple/multiprocessor

workstations feasible.

1

1. Introduction

MPEG-4 is an ISO/IEC standard developed by MPEG (Moving Picture Experts Group) and

adopted in 1998. The mandate for MPEG-4 was to standardize algorithms for audiovisual coding

in multimedia applications so as to support content-based interactivity, high compression, and/or

universal accessibility and portability of audio and video contents [1,2].

Due to MPEG-4’s content-based representation nature and flexible configuration structure,

software-based implementation of an MPEG-4 encoder seems to be a natural and viable option.

The main obstacle in such an approach is that it requires a large amount of computing power to

support real-time encoding operations. The latest developments in parallel and distributed multi-

processor systems, however, promise possible real-time performance for computation-intensive

signal processing applications at an affordable cost (e.g. a cluster of workstations). A software-

based MPEG-4 encoder implemented by He, Ahmad and Liou [3] and a real-time beamformer

implemented on multiple workstations by Allen and Evans [4] are two successful examples.

In particular, Allen and Evans implemented the real-time beamformer on UNIX

workstations using Computational Process Networks (CPN) and POSIX threads (Pthreads). CPN

is a computation model well suited for modeling computation-intensive real-time DSP

applications. POSIX is a recent standard with the goal to provide source-code portability across

different platforms. One of its extensions, Pthread, is a standardized model for dividing a

program into “lightweight” subtasks, which can be interleaved or run in parallel and thus allows

high performance implementation of any CPN model.

In this paper, we first present an overview of the MPEG-4 video encoder, followed by a

brief review of the framework proposed by Allen and Evans, on which our software

implementation is based. Then we construct a hierarchical CPN model of the core encoder in

MPEG-4 simple visual profile. Based on the model, we provide a software implementation using

C++/Pthreads and analyze the simulation results. Finally, we present our conclusions.

2

2. Overview of MPEG-4 Video Encoder

To enable the content-based interactivity, MPEG-4 Video Verification Model [2] introduces

the concept of VOP (video object plane). Each frame of an input video sequence is segmented

into a number of arbitrary image regions (VOPs), with each of them possibly describing a

particular image or video object of interest within scenes. So the video encoder is composed of a

number of VOP encoders.

The basic coding structure of a VOP encoder consists of shape coding (for arbitrarily shaped

video objects), motion estimation/compensation, and DCT-based texture coding [5]. The latter

two compose the core encoder of the MPEG-4 simple visual profile for wireless communication

applications. Block-based motion estimation and compensation techniques are employed in

MPEG-4 encoder to effectively remove temporal redundancy of the video objects. The intra

VOPs as well as the residual errors after motion-compensated prediction are coded using DCT

coding on 8 × 8 blocks. Scanning of the DCT coefficients followed by quantization and run-

length coding is performed using the techniques and VLC (variable length code) tables defined

in the MPEG-1/2 and H.263 standards, as well as the provision for quantization matrices [5].

Alternative techniques such as shape adaptive DCT and wavelet transform may be applied for

texture coding.

Other main functionalities supported by MPEG-4 video encoder are spatial and temporal

scalability and error robustness at VOP or higher level. Scalability is an important feature when

the same video objects are to be made available through channels of different bandwidth or

receivers of different processing capability, or to respond to different user requests.

3. Computational Process Networks and POSIX Threads

Formal system-level modeling provides portability and scalability over heterogeneous

software environments and guarantees determinacy and correctness.

3

Process Network (PN) is a concurrent model of computation that is a superset of data flow

models. As a directed graph, each arc represents a FIFO queue for communication and each node

an independent, concurrent process. CPN is proposed by Allen and Evans [4] as a bounded PN

model extended with firing thresholds from Computational Graphs. They presented a real-time

sonar beamformer implementation on UNIX workstations using CPN model and POSIX threads.

Key ideas include:

1) Conventional implementation of UNIX operating system is not capable of deterministic real-

time performance while POSIX extensions provide support for real-time applications on

UNIX workstations.

2) Computational Process network serves as the reliable formal design methodology for

organizing and developing real-time multiprocessor software. It provides necessary

scalability and guarantees determinate and complete execution, and bounded scheduling.

3) By carefully designing/dividing the processing node, the parallelism is exploited, the run-

time overhead reduced, and the real-time capability achieved on multiple workstations.

It is natural to apply their framework to the MPEG-4 video encoder implementation that

needs both the formal system design and extensive computation power. The key to achieving

real-time is to deliberately design the processing nodes.

4. Formal Modeling of the MPEG-4 Video Encoder

Kim and Evans [6] described a generic dataflow of video codec system modeled using

homogeneous synchronous dataflow (HSDF), in which each functional block is implemented as

a star in Ptolemy environment. Hamosfakidis and Paker[7] discussed the concurrency feature in

an MPEG-4 video encoding task, which suggests to us that CPN should be a better choice than

HSDF in terms of flexibility and scalability. In He’s MPEG-4 encoder implementation [3], real-

time capability depends mainly on highly effective scheduling and partitioning schemes, not on

4

the modeling part. In contrast, in Allen and Evans’ work [4], load balancing and partitioning is

integrated into the process network model and scheduling among multiple processors is

performed automatically, which provides a unified approach and better scalability.

Following Allen and Evans’ framework, we designed CPN model of the core encoder of the

MPEG-4 simple visual profile, as shown in Fig. 1. Each functional block in the encoder is

modeled as a CPN node and implemented as a Pthread class. Each arc represents the

communication channel between two nodes and is implemented as a FIFO queue with firing

threshold. A fork node copies its input to its multiple outputs. Using fork node simplifies all

other functional nodes to have only one output. The delay element provides previous

reconstructed frame required by motion estimation (ME) and motion compensation (MC) nodes.

With an (arbitrary) initial token on the delay arc, the initial execution of ME and MC nodes is

enabled and deadlock avoided. Motion vector information is contained in the token and can be

used for all nodes. Rate control is embedded in the variable length coding (VLC) node.

Motion estimation is the most computation-intensive part of an MPEG encoder. To balance

the load among CPN nodes and achieve real-time performance, we propose a hierarchical model

for the ME node as shown in Fig. 2. Obviously, this hierarchical model may apply to any other

Output
bitstream

Fork1
Sub_Pred

DCT
Quant

VLC

Inv.
Quant

Inv.
DCT

Add_Pred

Fork2

Fork3
ME MC

Input
frame

delay

Motion Vector

Fork4

Fig. 1 CPN Model of An MPEG-4 Simple-Profile Video Encoder

5

nodes in the model if the implementation of the top-level CPN model (Fig. 1) cannot satisfy the

real-time requirement.

5 Software Implementation

Our software implementation is based on Allen’s CPN software package [8] (C++ and

Pthread) and the free MPEG-2 codec source code (ANSI C) from MPEG Software Simulation

Group (MSSG) [9]. Allen’s CPN software package provides user an infrastructure for

implementing real-time applications that can be modeled by CPN. Two basic classes, CPNNode

and CPNQueue, are provided to implement the nodes and queues, respectively. There are two

distinct advantages using his software package: a) determinate concurrent execution guaranteed

by the semantics of formal PN model; b) portability and scalability provided by Pthread

implementation.

Given the limited time, we only implemented the MPEG-4 simple-profile video encoder, in

which the inputs are all rectangular frames. We have not done with refining each CPN node and

balancing the computation load among them. Our main accomplishment is a C++/Pthread

implementation of the top-level CPN model shown in Fig. 1. Major efforts involved in

converting the existing MPEG source code into C++/Pthread implementation lie in:

ME
1

Segmentation CompositionME
2

ME
n

ME Node

Previous
frame

Current
frame

Fig. 2 Hierarchical Model of the Motion Estimation Node: Each MEi (i=1,…,n) subnode
processes part of the current frame and is designed to be able to operate in real time.

6

1) Data and control flow segmentation. The original sequential code is partitioned into self-

contained blocks following the top-level CPN model. Each block in the block diagram is

implemented as one CPN node, which is a Pthread class inherited from CPNNode.

Neighboring nodes communicate through a FIFO queue, which is a class inherited from

CPNQueue.

2) Token design. Two types of tokens, frame-based and block-based, are used to represent

different dataflow among the CPN nodes. Block-based data type is used to facilitate the

computation of DCT/IDCT and Quantization/Inverse Quantization nodes. Some macroblock

information (e.g. motion vectors) is needed by most of the nodes and thus embedded in both

types of tokens.

6. Simulation Results

Our simulation is done on a single Intel Pentium III Xeon (733MHz) processor running

Linux. We test our encoder on a test video sequence, record the running times (average over 10

trials) and analyze the performance difference between our concurrent implementation and the

original sequential implementation of the encoder. To ensure fair comparison, jmake

(http://slug.arlut.utexas.edu/~jmake/) is used to compile both versions and there is no other

process load on the workstation when we conduct our experiments (the workstation is

standalone).

First, we have obtained successful encoding results, which is decodable and playable using

existing MPEG-2 player. This verifies the correct concurrent execution guaranteed by CPN

model.

Secondly, we observed that our concurrent implementation is on average 30% faster than

the original sequential implementation as shown in Fig. 3. This result is amazing because we run

both versions on a single processor and the C++/Pthread implementation should create certain

7

amount of run-time overhead. We think the reason is that the benefits from concurrent execution

of different parts of the encoder and possible overlap between CPU operations and memory I/O

operations outweigh the run-time overhead created. Speedup variations with respect to number

of frames reflect measurement error, initial setup time, etc.

 (a) (b)
Fig. 3 (a) Encoding time comparison. The sequential encoder is the original C implementation and the proposed is
our concurrent implementation. The test video sequence is of frame size 128×128 and color format 4:2:0 (YUV). (b)
Encoding time improvement percentage of our implementation over the original implementation.

Finally, we want to emphasize that on a single processor, the speedup resulted from

concurrent execution is not related to the size of FIFO queue and depends just on the inherent

parallelism of the designed PN model. In our experiments, different queue sizes (1~24) have

been tried and shown no effect on the execution time. However, we believe that the queue size

will have an impact on multiprocessor platform (it will affect the multiprocessor scheduling) and

a deliberately designed CPN model (e.g. with load-balanced nodes) will be the key to achieving

real-time performance on multiprocessor workstations.

7. Conclusion and Future Work

The CPN model guarantees the correct concurrent execution and the C++/Pthread

implementation provides portability and automatic scalability. Combining these two, Allen’s

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

Number of frames encoded

E
nc

od
in

g
tim

e
(s

ec
on

ds
)

Comparison of encoding time

Sequential

Proposed

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

Number of frames encoded

E
nc

od
in

g
tim

e
im

pr
ov

em
en

t (
%

)

Encoding time difference

8

software package does provide an excellent infrastructure for implementing high-throughput

real-time signal processing applications. This is again demonstrated by our experiment with the

MPEG-4 simple-profile video encoder.

Following our experimental results on a single processor, we expect our implementation of

the MPEG-4 simple-profile video encoder to speed up (approximately) linearly on

multiprocessor or multiple workstations. So real-time MPEG-4 encoding using our

implementation will be possible on multiprocessor workstations.

Future work needed to complete a real-time MPEG-4 video encoder on workstation include:

adding shape coding to support the object-oriented interactive capability, profiling and balancing

the computation load of each CPN Node, and testing its performance on multiprocessor platform.

References

[1] ISO/IEC JTC1/SC29/WG11 N2995, Overview of the MPEG-4 Standard, http://drogo.cselt.stet.it/mpeg/

standards/mpeg-4/mpeg-4.htm, Oct. 1999.

[2] T. Sikora, “The MPEG-4 Video Standard Verification Model,” IEEE Trans. Circuits and Systems for Video

Technology, vol. 7, no.1, pp. 19-31, Feb. 1997.

[3] Y. He, I. Ahmad and M. L. Liou, “A software-based MPEG-4 video encoder using parallel processing,” IEEE

Trans. Circuits and Systems for Video Tech., vol. 8, no. 7, pp. 909-920, Nov. 1998.

[4] G. E. Allen and B. L. Evans, “Real-Time Sonar Beamforming on Workstations Using Process Networks and

POSIX Threads”, IEEE Transactions on Signal Processing, pp. 921-926, Mar. 2000

[5] G. Cote, B. Erol, M. Gallant, and F. Kossentini, “H.263+: Video Coding at Low Bit Rates,” IEEE Trans.

Circuits and Systems for Video Technology, vol. 8, no. 7, pp. 849-866, Nov. 1998.

[6] J.-I. Kim and B. L. Evans, “System modeling and implementation of a generic video codec,” Proc. IEEE

Workshop on Multimedia Signal Processing, Los Angeles, CA, Dec. 1998, pp. 311-316.

[7] A. Hamosfakidis and Y. Paker, “Concurrency analysis for real time MPEG-4 video encoding,” IEEE Int. Conf.

on Multimedia Computing and Systems, Jun. 1999, vol. 2, pp. 862-866.

[8] G. Allen, Computational Process Network Source Code, http://www.ece.utexas.edu/~allen/CPNSourceCode/.

[9] MPEG Software Simulation Group, Free MPEG Software, http://www.mpeg.org/MPEG/MSSG/.

