
trib-

apply

nous

com-

tro-

roach

with

ster
The Timed Asynchronous Model and its Application in

Time-Triggered Protocols

Ruiqi Hu

Abstract

The time-triggered protocols (TTPs) are designed for developing fault-tolerant dis

uted hard real-time systems based on reliable communication networks. They do not

in systems with only asynchronous communication networks. The timed asynchro

(TA) model is an accurate description of the asynchronous distributed systems with a

munication network which has a non-negligible failure frequency. In this survey, we in

duce the basic ideas of both TTPs and the TA model in detail and propose a new app

to model distributed real-time systems in such a way that TTP based local clusters

reliable intra-cluster communication networks communicate on unreliable inter-clu

communication networks via TA based protocols.



ime-

low

ingle-

stry.

sting

nica-

ber-

, e.g.

ssible

wide

same

rcial

indows

tures

rapid

ial for

d their

imed

pose a

n of a

hows
1. Introduction

The Time-Triggered Protocols (TTPs) are designed for the implementation of t

triggered hard real-time systems [Kop94]. TTP/C is the first protocol that achieves

cost and high dependability at the same time. This makes it suitable for high-speed, s

failure operational safety-critical applications such as automobile manufacture indu

TTP assumes the underlying communication network to be highly reliable.

The timed asynchronous (TA) system model [Cri99] can be used to describe exi

distributed systems built from network workstations connected by unreliable commu

tion networks. It allows many needed services such as clock synchronization, mem

ship, consensus etc. to be implemented.

More and more distributed systems are using unreliable communication networks

systems based on mobile communication are asynchronous by their nature. It is po

to model such systems with an integration of the TA model and TTPs to maintain the

system coverage of the TA model and the cost-effective properties of TTPs at the

time.

With the rapid evolution in both software and hardware industry, many comme

operating systems that address real-time concerns are emerging. As an example, W

CETM is designed to be a new, portable, real-time, modular operating system that fea

popular Microsoft programming interfaces and that is supported by tools that enable

development of embedded and dedicated systems [Mur98]. It is nevertheless benefic

system designers to take advantage of what these operating systems provide to buil

real-time systems.

The purpose of our research is to investigate ways to implement the prototyped t

asynchronous and time-triggered services on Windows CE powered devices and pro

modeling method that integrates TA services and TTP services together in the desig

distributed real-time system. In this project, we expect to build a demonstration that s



ntally

cture,

ces of

more

-trig-

nica-

s. A

bally

more

on-

com-

cation

een

riptor

age,

epen-

pattern

ase a

nly

lot in a
the capability of this method.

2. Time-Triggered Protocols

Event-triggered architectures and time-triggered architectures are two fundame

different paradigms for the design of real-time systems. In an event-triggered archite

all activities, such as task activation and communication, are initiated as consequen

events and all scheduling and communication decisions are made dynamically. It is

flexible and more responsive during the low-load scenarios. On the other hand, time

gered system are driven by the progression of the global time. All tasks and commu

tion actions are initiated when the real-time clock reaches predetermined value

distributed time-triggered system must synchronize the local clocks to represent a glo

synchronized time base of specified precision [Kop87]. Time-triggered systems are

robust and testable, and perform well even in overload scenarios [Kop94].

2.1 TTP in detail

A typical TTP system are a cluster of Fault-Tolerant Units (FTUs), each of which c

sists of one or more nodes, interconnected by a communication network with dual

munication buses. A node consists of two subsystems: the host and the communi

controller. The Communication-Network Interface (CNI) is the internal interface betw

them. The communication controller has a local memory to hold the MEssage Desc

list (MEDL) that determines at what point in time a node is allowed to send a mess

and when it can expect to receive a message from another node. It also contains ind

dent hardware devices, the Bus Guardians (BSs), that monitor the temporal access

of the controller to the replicated buses, and terminate the controller operation in c

timing violation in the regular access pattern is detected [Kop97].

TTP is a time-division-multiple-access (TDMA) protocol where every node can o

send its message on the shared communication buses in a specific assigned time s



ered

nly

it is

plified

initial-

n

o-

lly

sted

rop-

ables

ered

ers a

strac-

n the

s of a

smitted

ts at

98].

ail-

ether

ving a

mes-
predetermined TDMA schedule which is shared by all the nodes. The time-trigg

nature of TTP brings it following properties:

Use of A Priori Knowledge: TTP has a sparse time base [Kop97] in which events o

happen at predetermined time points in the globally synchronized time base. Since

TDMA based, TTP allows every message to be broadcasted and uses a sim

acknowledgement scheme [Kop94]. The synchronous schedule is generated at the

ization phase of the system.

Clock Synchronization: TTP maintains a Byzantine-resilient clock synchronizatio

with a precision about 10-6 second by performing the Fault-Tolerant Average (FTA) alg

rithm periodically, with the support of hardware in most cases [Kop97].

Composability: the CNI between the TTP controller and the host computer is fu

specified in the value and temporal domain. This allows the host to be built and te

independently. Since the CNI will remain the same during a system integration, the p

erties of the subsystems will not be invalidated after the system integration. This en

the adoption of a cost-effective bottom-up design method in developing time-trigg

real-time systems.

Fault Tolerance: The independent bus guardians ensure that a node either deliv

message at the correct moment or not at all, i.e. the nodes support the fail-silent ab

tion in the temporal domain. The host software is responsible to achieve fail silence i

value domain by ensuring space and/or time redundancy that all the internal failure

host are detected before a non-detectable erroneous output message is tran

[Kop97]. TTP also provides replica determinism: a message arrives at all recipien

exactly the same time with exactly the same contents or it does not arrive at all [Kro

Membership: The membership service in TTP can inform all system nodes of the f

ure of a node with minimum delay. Each node broadcasts its membership vector tog

with any message it sends. Each node updates its membership vector after recei

message from another node by checking the status of the corresponding field in the



own

of

trib-

ing on

rovide

tain

s the

mes-

ssed at

ge is

n the

ri91].

.

hro-

stem

lue

nreli-

s that

essage

ilures

to hard-

the

ptions
sage.

Two variants of the TTP are available now, the full version TTP/C and the scaled-d

version TTP/A, which share a compatible CNI. The TTP/C protocol is the full version

the TTP that provides all services needed for the implementation of a fault-tolerant dis

uted hard real-time systems [Kop97].

3. The Timed Asynchronous Model

Distributed systems can be classified as synchronous or asynchronous depend

whether their underlying communication and process management services can p

“certain communication” or not [Cri96]. A system is synchronous if it guarantees cer

communication and is asynchronous otherwise[Cri99]. A certain communication ha

property that at any time there is a minimum number of correct processes, and any

sage sent by a correct process to a correct destination process is received and proce

the destination within a known amount of time. This means the probability the messa

not received and processed in time is “negligible”. This property can be achieved upo

assumption that the frequency of failures that can occur in a system is bounded [C

Unfortunately, in many distributed systems this assumption can not be fully satisfied

The TA model is proposed by Flaviu Cristian and Christof Fetzer to describe async

nous distributed systems. It makes following basic assumptions on the underlying sy

[Cri99]: 1) All services are timed: their specification is prescribed not only in the va

domain, but also in the temporal domain; 2) Interprocess communication is via an u

able datagram service with omission/performance failure semantics: the only failure

messages can suffer are omission (message is dropped) and performance failures (m

is delivered late); 3) Processes have crash/performance failure semantics: the only fa

a process can suffer are crash and performance failures; 4) Processes have access

ware clocks that run within a linear envelope of real-time; and 5) No bound exists on

rate of communication and process failures that can occur in a system. These assum



uartz

strac-

time-

ork-

mber-

ntable

atic

tions

hich

twork.

Each

t runs in

equest

ed by

f the

onstant

ock.

eal-

sion

envi-

duce

rac-
are practical because: 1) Nearly all the workstations now are using high-precision q

clocks; and 2) For those services without any response time promises, a high level ab

tion that depends on them (it could be a human user at the highest level) can define a

out to decide if they are failed.

This model adequately describes existing distributed systems build from network w

stations since many practically needed services such as clock synchronization, me

ship, consensus, election, and atomic broadcast have been shown to be impleme

[Cri99] [Fet99]. In [Fet96] the notion of fail-awareness is introduced as a system

means of transforming synchronous service specifications into fail-aware specifica

that become implementable in timed asynchronous systems.

3.1 TA in detail

A timed asynchronous distributed system consists of a finite set of processes w

communicate via a datagram service. Processes run on the computer nodes of a ne

Lower level software in the nodes and the network implements the datagram service.

process has access to a local hardware clock. The process management service tha

each node uses this clock to manage alarm clocks that allow the local processes to r

to be awakened whenever desired [Cri99].

The hardware clock consists of an oscillator and a counting register that is increas

the ticks of the oscillator. It can drift apart from real-time because of the imprecision o

oscillator, temperature changes, and aging. The model assumes there exists a c

maximum drift rate that bounds the absolute value of the drift rate of a correct cl

Hence in this model, all the correct clocks are within a narrow linear envelope of r

time. The drift rate can be further divided into systematic drift error due to the impreci

of the oscillator and drift errors due to other reasons such as aging or changes in the

ronment. A hardware clock can be calibrated by multiplying a constant factor to re

the systematic drift error and it could reduce the drift rate by a magnitude of two in p



y cor-

if the

hese

f all

mes-

vers

d is

e sent

t lower

nce of

in the

mes-

have a

ffers a

. The

also

tan-

xecut-

h. A

It will

or it

es, the

g. The

h the
tise. Clocks can be externally synchronized if at any instant the deviation between an

rect clock and real-time is bounded by a known constant, or internally synchronized

deviation between any two correct clocks is bound by a known constant. Either of t

synchronization needs to be performed periodically to account for the ongoing drift o

clocks [Cri99].

The datagram service provides primitives for transmitting unicast and broadcast

sages. It must satisfy following requirements: 1) Validity: if the datagram service deli

a messagem to a processp at timet and identifies processq asm’s sender, thenq must sent

m at some earlier times < t, 2) No-duplication: each message has a unique sender an

delivered at a destination process at most once, and 3) Min-Delay: any messag

between two remote processes has a transmission delay that is at least a constan

bound transmission delay. The datagram service by itself does not ensure the existe

an upper bound for the transmission delay of messages. However, since all services

model are timed, a one way time-out could be defined so that within which the actual

sages sent or broadcasted are likely to be delivered. It is possible for a message to

transmission delay greater than the time-out value, in which case the message su

performance failure. If a message is never delivered, it suffers an omission failure

choice of this time-out may vary with the size of the message, network load, and

depends on the protocol [Cri99].

A process can be in one of the following three modes: 1) up: it is executing its ‘s

dard’ program code, 2) crashed: a process stopped executing its code, and 3) it is e

ing its state ‘initialization’ code either after its creation or when it restarts after a cras

process can set an alarm clock to be awakened at some specified future clock time.

not take a step after it sets its alarm clock unless it is awakened for that alarm time

receives a message before it is awakened for that alarm time. When a process crash

process management service forgets any active alarm time it has set before crashin

scheduling delay is defined as the time interval between the earliest real-time at whic



e pro-

n upper

ctual

erfor-

e it

ation

P is

reli-

net-

an be

ystem

work.

nica-

sed

from

oach

s are

niza-

ck

syn-

igning

lity of
hardware clock shows a value at least the preset alarm clock and the actual time th

cess is awaken. The process management service does not ensure the existence of a

bound on this scheduling delay. Again, a timeout delay can be defined so that a

scheduling delays are likely to be smaller than it. A non-crashed process suffers a p

mance failure when it is not awakened within the timeout interval of the last alarm tim

has specified [Cri99].

4 Plans for Implementation of the Project

As described in the previous two sections, TTP assumes its underlying communic

network to provide certain communication. It is a reasonable assumption since TT

designed for systems with dedicated communication network that can provide highly

able transmission with a message failure rate about 10-9 per hour. However, if we want to

build a distributed system based on unreliable communication networks like mobile

works, the assumptions TTP made are no longer satisfied. However, the TA model c

used to describe these systems accurately. It is thus possible to model the whole s

into several clusters which communicate via an asynchronous communication net

Each cluster consists of one or more FTUs communicating via synchronous commu

tion network. TTPs are fully functional to implement intra-cluster services and TA ba

protocols can be used to implement inter-cluster services. A special FTU derived

TTP gateway [Kop97] acts as the interface between them.

The utmost objective of this research is to demonstrate the capability of the appr

above. In order to make TTPs and the TA model cooperate effectively, many issue

needed to be investigated, such as integrating the global probabilistic clock synchro

tion [Cri89] and the cluster-wise FTA algorithm [Kop97] to achieve system-wide clo

synchronization, using the failure transformation mechanism proposed in to achieve

chronous properties from timed asynchronous model with hardware watchdogs, des

parameterized clock synchronization and atomic broadcast algorithms to ensure qua



dapt-

l of

ight

ation

ulate

d on
services, and dynamically generating TDMA schedules for TTP to improve system a

ability. All of these mean a huge amount of work and it is too ambitious to finish al

them within such a limited time of one semester.

Hence, I plan to focus on the modeling and simulating part of this project first. It m

be a good starting point to design a distributed service (a system clock synchroniz

protocol is under consideration now) based on this distributed system model and sim

it on a prototyped system implementation. The hardware environment will be base

Windows CE powered PCs (CEPCs).

5 KEY PAPERS
[Cri89], [Cri99], and [Kop94].

REFERENCES
[Cri89] F. Cristian, “Probabilistic clock synchronization,”Distributed Computing, vol. 3, no. 3, pp. 146-

158, Mar. 1989. An earlier version IBM Research Report, San Jose, RJ 6432, 1988.

[Cri96] F. Cristian. “Synchronous and asynchronous group communication,”Communications of the ACM,
vol. 39, no. 4, pp. 88-97, Apr. 1996.

[Cri99] F. Cristian and C. Fetzer, “The timed asynchronous distributed system model,”IEEE Trans. on Par-
allel and Distributed Systems, vol. 10, no. 6, June, 1999.

[Fet96] C. Fetzer and F. Cristian, “Fail-awareness in timed asynchronous systems,” InProc. of ACM Symp.
on Principles of Distributed Computing, Philadelphia, May 1996, pp. 314-321a.http://
www.cs.ucsd.edu/~cfetzer/FA.

[Fet99] C. Fetzer and F. Cristian, “A highly available local leader service,”IEEE Trans. on Software Engi-
neering, vol. 25, no. 5, Sep. 1999.http://www.cs.ucsd.edu/~cfetzer/HALL.

[Kop87] H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed real-time systems,”IEEE
Trans. Computers, vol. 36, no. 8, pp. 933-940, Aug. 1987.

[Kop94] H. Kopetz and G. Grunsteidl, “TTP - A protocol for fault-tolerant real-time systems,”IEEE Com-
puter, pp. 14-23, Jan. 1994.

[Kop97] H. Kopetz,Real-Time Systems: Design Principles for Distributed Embedded Applications, Kluwer
Academic Publishers, Norwell (MA), ISBN 0-7923-9894-7, 1997.

[Kro98] G. Kross, “The time-triggered communication protocol TTP/C,”Real-Time Magazine, No. 4, pp.
100-101, 1998.

[Mur98] J. Murray,Inside Microsoft Windows CE, Microsoft Press, ISBN 1-5723-1854-6, 1998.


	The Timed Asynchronous Model and its Application in Time-Triggered Protocols
	Abstract
	1. Introduction
	2. Time-Triggered Protocols
	2.1 TTP in detail

	3. The Timed Asynchronous Model
	3.1 TA in detail

	4 Plans for Implementation of the Project
	5 KEY PAPERS
	REFERENCES


