The Timed Asynchronous Model and its Application in Time-Triggered Protocols

Ruiqi Hu

03/10/2000
Time-Triggered Protocols (TTPs)

• Time-triggered vs. event-triggered communication
• Static scheduling
 – TDMA is used to guarantee transmission delay and jitter.
• Clock synchronization
 – Fault-tolerant internal synchronization generates a global time base.
• Composability
 – The sub-system property will not be invalidated after integration.
• Fail Silent
 – The bus guardian ensures that a node either delivers a message at the correct moment or not at all.
TTP/C

- Fault-Tolerant Units (FTUs)
- Node: Smallest Replaceable Units (SRUs)
 - *Host*
 - Application software
 - *Controller Network Interface (CNI)*
 - memory abstraction using DPRAM
 - *Autonomous Communication Controller*
 - Message Description List (MEDL)
 - BUS Guardian
- Communication Network
 - *Duplicated broadcast buses*
Timed Asynchronous(TA) model

- Each non-crashed process has a correct *hardware clock*.
- All the services are *timed*, i.e. having a time-out.
- Inter-process communication can only suffer *omission* or *performance* failures.
- Process can only suffer *crash* or *performance* failures.
- There is *no upper bound* on transmission and scheduling failures.
Objective

• Implement TTP in timed asynchronous distributed systems
 – Uncertain communication
 • Datagram services
 – Less hardware support
 • Soft guardian
 • Clock synchronization
• Formal modeling based on TTP