The timed asynchronous model and its
application in time-triggered protocols

Ruiqi Hu

Abstract

Distributed real-time systems use both synchronous communica-
tion and asynchronous communication. The asynchronous communi-
cation has much more complicated semantics than the synchronous
one. It is desirable to provide quasi-synchronous semantics for asyn-
chronous communication networks. Time-triggered protocols in com-
bination with the time asynchronous model can be used to form a
hybrid system model with this property. This project is based on this
research topic and focuses on the clock synchronization problem. An
adaptive clock synchronization protocol functioning as a part of the
hybrid system is fully discussed in this report.

1 Introduction

Traditionally, embedded real-time systems are implemented in dedicated
hardware with simple software components in order to meet their stringent
requirement on speed and size. However, with the rapid evolvement in hard-
ware industry, hardware can be made much cheaper and faster than before.
This enables the construction of real-time systems with more complicated
software components.

Distributed real-time systems, which are based on network communica-

tion, are one important class of real-time systems because of their capability



and adaptability. These systems used to have dedicated communication net-
works which operate synchronously. The semantics of these communication
networks are simple. However, asynchronous communication networks are
beginning to find their role in more and more application areas. These com-
munication networks are asynchronous in the sense that they can not provide
certain communication in which messages are guaranteed to be delivered in
time. The semantics of the asynchronous networks are more complicated.
The problem of how to provide quasi-synchronous semantics for these asyn-
chronous networks so that the system developers can still benefit from the
simple semantics of synchronous networks becomes the research topic upon
which this project is based.

Time-triggered protocols (TTPs), proposed by H. Kopetz et al.[7] [8] [9],
are designed for the implementation of time-triggered hard real-time systems.
They are suitable for high-speed, single-failure operational safety-critical ap-
plications such as automobile manufacture industry. TTP assumes the un-
derlying communication network to be highly reliable.

The timed asynchronous (TA) model is introduced by F. Cristian et al.
in [3] [4] to describe existing distributed systems built from network work-
stations connected by unreliable communication networks. It allows many
needed services such as clock synchronization, membership, consensus etc.
to be implemented.

A general idea of hybrid communication systems which accommodate
both synchronous and asynchronous communication networks tries to achieve
both the wide system coverage and the cost-effective properties at the same
time. Inside the hybrid system, TA model can be used in cooperation

with TTPs. Such a hybrid system consists of clusters (of processors) with



synchronous intra-cluster communication network and asynchronous inter-
cluster communication network. A gateway node behaves as the interface
between the cluster and the rest of the system. Gateways, on behalf of
their corresponding clusters, communicate via the inter-cluster communica-
tion network and the TA model is used to model their behavior.

In a real-time system, there are fundamental services such as clock syn-
chronization service, atomic broadcast service, and membership service etc.
2] [5] The clock synchronization protocol is much more important since many
other protocols relies on the synchronized clocks among all the processors.
This project focuses on the clock synchronization protocol in the hybrid
system and proposed an adaptive clock synchronization protocol. In the fol-
lowing sections, the clock synchronization protocol, the adaptive protocol,

and its implementation are discussed respectively.

2 Clock Synchronization

The clock synchronization in the hybrid system consists of two parts. In-
side each cluster, where T'TP is applied, the processors synchronize to the
gateway. Dedicated hardware-supported clock synchronization is used since
this kind of network usually has a fault-tolerant system BUS on which high
precision, guaranteed clock synchronization can be achieved [6]. However, in
the asynchronous communication networks that connect the gateways, which
is modeled by TA, it is not possible to achieve guaranteed clock synchroniza-
tion since the messages in this network can suffer performance failures, i.e.
it is possible for the messages to be delivered late. Probabilistic clock syn-
chronization [1] approach is used in this network.

The idea of probabilistic clock synchronization is illustrated in Figure 1.



Real
Time

Slave

Master

min+b

Figure 1: Probabilistic clock synchronization

Whenever a slave processor wants to synchronize with a master processor
(at real time t), it sends an inquery message to the master processor. The
master processor responds to this inquiry with an acknowledge message which
contains its local time T’ at which the inquiry arrives. The acknowledge
message arrives at the slave processor at real-time ¢t”. The slave processor
measures the round-trip delay 2D between real time ¢ and t” in its local
clock. Based on the assumption that the minimum message transmission
delay is men and all the clock has a maximum drift rate of p, the local
clock value of the master processor at real time ¢” lies in the time interval
[T +min(1—p), T+2D(1+2p) —min(1+ p)]. Thus, the best estimation the
slave processor can make about the master processor’s clock value at real time
t”is T" =T + D(1 4 2p) — minp, which is the midpoint of that interval. By

doing this, the maximum deviation between the slave and the master clock



achieves its minimum, e = D—(1+p)min. Since the network is asynchronous,
it is possible that the round-trip delay be an arbitrary large value. A timeout
value 2U is thus introduced so that the slave processor is able to conclude that
either the inquiry message or the acknowledge message suffers a performance
failure when it does not receive the acknowledge message from the master
processor within 2U time units by its local clock after sending the inquiry
message.

The probabilistic clock synchronization algorithm has to decide when
to start the next synchronization after achieving current synchronization.
The real time delay to the next rapport, dnr, should be chosen to keep the
deviation between the slave clock and the master clock within the desired
precision. Given the maximum master slave deviation ms, dnr could be
as as large as p~'(ms — e). Consider the possibility that a synchronization
attempt might fail, k£ attempts are tried before the synchronization algorithm
fails. If consecutive attempts has an interval of W time units(W > 2U), the
maximum real time delay dna between a rapport and the next attempt has

to be smaller than dna = p~'(ms —e) — (1 + p)kW.

3 Adaptive Clock Synchronization

Since the communication network is not dedicated in inter-cluster synchro-
nization, it is possible that other communication protocols run simultane-
ously as the clock synchronization protocol. The network load can change
over time, and this potentially affect the communication qualities. Figure 2
shows the round-trip delay in the light load scenario and the heavy load
scenario. It is unfortunate to find out that the performance of the original

probabilistic clock synchronization algorithm varies with the network load



Round-trip delay measured at different network loads(30,000 samples)
800 T T T T m

Heavy load —
Light load - - - _|

700
600 - P .
500 .
Number . “
of 400 |- f |

packeges ‘ ‘
300

200

100 -

0 Lo \ D
150 200 250 300 350 400
Round-trip delay(in microseconds)

Figure 2: Round-trip delays

significantly. Table 1 shows some simulation result in a light load scenario
and a heavy load scenario. As the table shows, the algorithm performs poorly
in the heavy load scenario with a failure percentage as high as 20%. The rea-
son is that the timeout value 2U is too small in this scenario. However, since
it is not possible to predict the network load, there is no way to choose a
fixed U that allows the algorithm to perform well in all possible scenarios.
One way to solve this problem is to make U adaptive, i.e. U is mod-
ified dynamically to reflect the current network load. The slave processor

monitors the history of the round-trip delays. It increases U whenever the



H \ Light Load \ Heavy Load H

Probabilistic Protocol
failure # 107/45068 | 3125/16194
failure percentage 0.24% 19.30%
Adaptive Protocol
failure # 23/45227 | 578/22696
failure percentage 0.05% 2.55%

Table 1: Simulation results

network load is increasing and decreases U when the network load is decreas-
ing. Currently, the adaptive protocol works like this: when it observes more
consecutive timeouts, it concludes that the network load is increasing; and
when it observes that the round-trip delays are consistently smaller than a
given value, which is smaller than 2U, it concludes that the network load is
decreasing. As shown in Table 1, this simple adaptation approach improves
the performance significantly, especially in the heavy load scenario(a failure

percentage of only 2.55% is achieved).

4 Implementation

The hardware environment to implement the original probabilistic clock syn-
chronization protocol and the adaptive synchronization protocol is Windows
CE powered PCs(CEPCs). Windows CE is an operating system targeted
on embedded systems. It has special design concerns to support real-time
system developing. However, it is still far from a true real-time OS. The
advantage of choosing this OS is that developers can benefit from its fully
functional Win32 APIs. Its configurable nature also provides a new paradigm

to develop embedded systems.



The protocols are developed under Windows CE Studio 3.0(Beta) and
Windows CE Platform Builder 2.12. The datagram communication net-
work is implemented using Winsock. The simulations are performed on two
CEPCs which are connected via 10MBPS ethernet together with four Linux
machines. The network load is simulated by having the Linux machines send-
ing messages to each other at different rates. Some of the simulation results

are presented in Figure 2 and Table 1.

5 Conclusions

As the simulation results shown, the adaptive clock synchronization proto-
col can achieve reliable performance despite network load viariation. This
protocol can be further improved by providing fail-awareness [4] semantics
with an indicator showing whether the clock is synchronized or not. If syn-
chronization is lost, an application or another service that uses this clock
synchronization service can observe this from the indicator and perform cor-
responding operations, such as degrading the service they provide. It is also
possible to extend this protocol in such a way that not only U could be adap-
tive, but also other system parameters. An even more reliable protocol could
be expected on this track. The hybrid system can provide quasi-synchronous
semantics by using the fail-awareness approach. Further research work can
be performed on how to formally specify the other fail-awareness protocols

based on the clock synchronization protocol considered in this project.



References

1]

F. Cristian, “Probabilistic clock synchronization,” Distributed Comput-

ing, vol. 3, no. 3, pp. 146-158, Mar. 1989.

F. Cristian. “Synchronous and asynchronous group communication,”

Communications of the ACM, vol. 39, no. 4, pp. 88-97, Apr. 1996.

F. Cristian and C. Fetzer, “The timed asynchronous distributed system
model,” IEEFE Trans. on Parallel and Distributed Systems, vol. 10, no.
6, June, 1999.

C. Fetzer and F. Cristian, “Fail-awareness in timed asynchronous sys-
tems,” In Proc. of ACM Symp. on Principles of Distributed Computing,
Philadelphia, May 1996, pp. 314-321a.

C. Fetzer and F. Cristian, “A highly available local leader service,” IEEE
Trans. on Software Engineering, vol. 25, no. 5, Sep. 1999.

H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed
real-time systems,” IEEFE Trans. Computers, vol. 36, no. 8, pp. 933-940,
Aug. 1987.

H. Kopetz and G. Grunsteidl, “T'TP - A protocol for fault-tolerant real-
time systems,” IEEE Computer, pp. 14-23, Jan. 1994.

H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, Kluwer Academic Publishers, Norwell (MA), ISBN
0-7923-9894-7, 1997.

G. Kross, “The time-triggered communication protocol TTP/C,” Real-
Time Magazine, No. 4, pp. 100-101, 1998.

9



