
The timed asynchronous model and its
application in time-triggered protocols

Ruiqi Hu

Abstract

Distributed real-time systems use both synchronous communica-
tion and asynchronous communication. The asynchronous communi-
cation has much more complicated semantics than the synchronous
one. It is desirable to provide quasi-synchronous semantics for asyn-
chronous communication networks. Time-triggered protocols in com-
bination with the time asynchronous model can be used to form a
hybrid system model with this property. This project is based on this
research topic and focuses on the clock synchronization problem. An
adaptive clock synchronization protocol functioning as a part of the
hybrid system is fully discussed in this report.

1 Introduction

Traditionally, embedded real-time systems are implemented in dedicated

hardware with simple software components in order to meet their stringent

requirement on speed and size. However, with the rapid evolvement in hard-

ware industry, hardware can be made much cheaper and faster than before.

This enables the construction of real-time systems with more complicated

software components.

Distributed real-time systems, which are based on network communica-

tion, are one important class of real-time systems because of their capability



and adaptability. These systems used to have dedicated communication net-

works which operate synchronously. The semantics of these communication

networks are simple. However, asynchronous communication networks are

beginning to find their role in more and more application areas. These com-

munication networks are asynchronous in the sense that they can not provide

certain communication in which messages are guaranteed to be delivered in

time. The semantics of the asynchronous networks are more complicated.

The problem of how to provide quasi-synchronous semantics for these asyn-

chronous networks so that the system developers can still benefit from the

simple semantics of synchronous networks becomes the research topic upon

which this project is based.

Time-triggered protocols (TTPs), proposed by H. Kopetz et al.[7] [8] [9],

are designed for the implementation of time-triggered hard real-time systems.

They are suitable for high-speed, single-failure operational safety-critical ap-

plications such as automobile manufacture industry. TTP assumes the un-

derlying communication network to be highly reliable.

The timed asynchronous (TA) model is introduced by F. Cristian et al.

in [3] [4] to describe existing distributed systems built from network work-

stations connected by unreliable communication networks. It allows many

needed services such as clock synchronization, membership, consensus etc.

to be implemented.

A general idea of hybrid communication systems which accommodate

both synchronous and asynchronous communication networks tries to achieve

both the wide system coverage and the cost-effective properties at the same

time. Inside the hybrid system, TA model can be used in cooperation

with TTPs. Such a hybrid system consists of clusters (of processors) with

2



synchronous intra-cluster communication network and asynchronous inter-

cluster communication network. A gateway node behaves as the interface

between the cluster and the rest of the system. Gateways, on behalf of

their corresponding clusters, communicate via the inter-cluster communica-

tion network and the TA model is used to model their behavior.

In a real-time system, there are fundamental services such as clock syn-

chronization service, atomic broadcast service, and membership service etc.

[2] [5] The clock synchronization protocol is much more important since many

other protocols relies on the synchronized clocks among all the processors.

This project focuses on the clock synchronization protocol in the hybrid

system and proposed an adaptive clock synchronization protocol. In the fol-

lowing sections, the clock synchronization protocol, the adaptive protocol,

and its implementation are discussed respectively.

2 Clock Synchronization

The clock synchronization in the hybrid system consists of two parts. In-

side each cluster, where TTP is applied, the processors synchronize to the

gateway. Dedicated hardware-supported clock synchronization is used since

this kind of network usually has a fault-tolerant system BUS on which high

precision, guaranteed clock synchronization can be achieved [6]. However, in

the asynchronous communication networks that connect the gateways, which

is modeled by TA, it is not possible to achieve guaranteed clock synchroniza-

tion since the messages in this network can suffer performance failures, i.e.

it is possible for the messages to be delivered late. Probabilistic clock syn-

chronization [1] approach is used in this network.

The idea of probabilistic clock synchronization is illustrated in Figure 1.

3



2d

t’t t"

min+a min+b

2D
Slave

Time
Real

T’T

Master

Figure 1: Probabilistic clock synchronization

Whenever a slave processor wants to synchronize with a master processor

(at real time t), it sends an inquery message to the master processor. The

master processor responds to this inquiry with an acknowledge message which

contains its local time T ′ at which the inquiry arrives. The acknowledge

message arrives at the slave processor at real-time t”. The slave processor

measures the round-trip delay 2D between real time t and t” in its local

clock. Based on the assumption that the minimum message transmission

delay is min and all the clock has a maximum drift rate of ρ, the local

clock value of the master processor at real time t” lies in the time interval

[T +min(1−ρ), T +2D(1+2ρ)−min(1+ρ)]. Thus, the best estimation the

slave processor can make about the master processor’s clock value at real time

t” is T ′ = T + D(1 + 2ρ)−minρ, which is the midpoint of that interval. By

doing this, the maximum deviation between the slave and the master clock

4



achieves its minimum, e = D−(1+ρ)min. Since the network is asynchronous,

it is possible that the round-trip delay be an arbitrary large value. A timeout

value 2U is thus introduced so that the slave processor is able to conclude that

either the inquiry message or the acknowledge message suffers a performance

failure when it does not receive the acknowledge message from the master

processor within 2U time units by its local clock after sending the inquiry

message.

The probabilistic clock synchronization algorithm has to decide when

to start the next synchronization after achieving current synchronization.

The real time delay to the next rapport, dnr, should be chosen to keep the

deviation between the slave clock and the master clock within the desired

precision. Given the maximum master slave deviation ms, dnr could be

as as large as ρ−1(ms − e). Consider the possibility that a synchronization

attempt might fail, k attempts are tried before the synchronization algorithm

fails. If consecutive attempts has an interval of W time units(W > 2U), the

maximum real time delay dna between a rapport and the next attempt has

to be smaller than dna = ρ−1(ms− e)− (1 + ρ)kW .

3 Adaptive Clock Synchronization

Since the communication network is not dedicated in inter-cluster synchro-

nization, it is possible that other communication protocols run simultane-

ously as the clock synchronization protocol. The network load can change

over time, and this potentially affect the communication qualities. Figure 2

shows the round-trip delay in the light load scenario and the heavy load

scenario. It is unfortunate to find out that the performance of the original

probabilistic clock synchronization algorithm varies with the network load

5



0

100

200

300

400

500

600

700

800

150 200 250 300 350 400

Number
of

packeges

Round-trip delay(in microseconds)

Round-trip delay measured at different network loads(30,000 samples)

Heavy load
Light load

Figure 2: Round-trip delays

significantly. Table 1 shows some simulation result in a light load scenario

and a heavy load scenario. As the table shows, the algorithm performs poorly

in the heavy load scenario with a failure percentage as high as 20%. The rea-

son is that the timeout value 2U is too small in this scenario. However, since

it is not possible to predict the network load, there is no way to choose a

fixed U that allows the algorithm to perform well in all possible scenarios.

One way to solve this problem is to make U adaptive, i.e. U is mod-

ified dynamically to reflect the current network load. The slave processor

monitors the history of the round-trip delays. It increases U whenever the

6



Light Load Heavy Load
Probabilistic Protocol

failure # 107/45068 3125/16194
failure percentage 0.24% 19.30%
Adaptive Protocol

failure # 23/45227 578/22696
failure percentage 0.05% 2.55%

Table 1: Simulation results

network load is increasing and decreases U when the network load is decreas-

ing. Currently, the adaptive protocol works like this: when it observes more

consecutive timeouts, it concludes that the network load is increasing; and

when it observes that the round-trip delays are consistently smaller than a

given value, which is smaller than 2U , it concludes that the network load is

decreasing. As shown in Table 1, this simple adaptation approach improves

the performance significantly, especially in the heavy load scenario(a failure

percentage of only 2.55% is achieved).

4 Implementation

The hardware environment to implement the original probabilistic clock syn-

chronization protocol and the adaptive synchronization protocol is Windows

CE powered PCs(CEPCs). Windows CE is an operating system targeted

on embedded systems. It has special design concerns to support real-time

system developing. However, it is still far from a true real-time OS. The

advantage of choosing this OS is that developers can benefit from its fully

functional Win32 APIs. Its configurable nature also provides a new paradigm

to develop embedded systems.

7



The protocols are developed under Windows CE Studio 3.0(Beta) and

Windows CE Platform Builder 2.12. The datagram communication net-

work is implemented using Winsock. The simulations are performed on two

CEPCs which are connected via 10MBPS ethernet together with four Linux

machines. The network load is simulated by having the Linux machines send-

ing messages to each other at different rates. Some of the simulation results

are presented in Figure 2 and Table 1.

5 Conclusions

As the simulation results shown, the adaptive clock synchronization proto-

col can achieve reliable performance despite network load viariation. This

protocol can be further improved by providing fail-awareness [4] semantics

with an indicator showing whether the clock is synchronized or not. If syn-

chronization is lost, an application or another service that uses this clock

synchronization service can observe this from the indicator and perform cor-

responding operations, such as degrading the service they provide. It is also

possible to extend this protocol in such a way that not only U could be adap-

tive, but also other system parameters. An even more reliable protocol could

be expected on this track. The hybrid system can provide quasi-synchronous

semantics by using the fail-awareness approach. Further research work can

be performed on how to formally specify the other fail-awareness protocols

based on the clock synchronization protocol considered in this project.

8



References

[1] F. Cristian, “Probabilistic clock synchronization,” Distributed Comput-

ing, vol. 3, no. 3, pp. 146-158, Mar. 1989.

[2] F. Cristian. “Synchronous and asynchronous group communication,”

Communications of the ACM, vol. 39, no. 4, pp. 88-97, Apr. 1996.

[3] F. Cristian and C. Fetzer, “The timed asynchronous distributed system

model,” IEEE Trans. on Parallel and Distributed Systems, vol. 10, no.

6, June, 1999.

[4] C. Fetzer and F. Cristian, “Fail-awareness in timed asynchronous sys-

tems,” In Proc. of ACM Symp. on Principles of Distributed Computing,

Philadelphia, May 1996, pp. 314-321a.

[5] C. Fetzer and F. Cristian, “A highly available local leader service,” IEEE

Trans. on Software Engineering, vol. 25, no. 5, Sep. 1999.

[6] H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed

real-time systems,” IEEE Trans. Computers, vol. 36, no. 8, pp. 933-940,

Aug. 1987.

[7] H. Kopetz and G. Grunsteidl, “TTP - A protocol for fault-tolerant real-

time systems,” IEEE Computer, pp. 14-23, Jan. 1994.

[8] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-

bedded Applications, Kluwer Academic Publishers, Norwell (MA), ISBN

0-7923-9894-7, 1997.

[9] G. Kross, “The time-triggered communication protocol TTP/C,” Real-

Time Magazine, No. 4, pp. 100-101, 1998.

9


