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Abstract

Most Electronic Design Automation (EDA) tool vendors have recognized the importance

of software synthesis for programmable devices. Ptolemy is an object-oriented platform

developed by University of California, Berkeley, which provides a block-diagram mechanism for

representing systems described by one or more models of computation. It allows simulation of

systems as well as synthesis of software from a block diagram for a variety of target languages:

low-level assembly as well as high-level languages. In this project, we implemented code

generation for  the Texas Instrument’s TMS320C6x family of processors in Ptolemy from a

system description with Synchronous Dataflow (SDF) semantics, by employing optimized

kernels for common Digital Signal Processing (DSP) operations. We evaluated the performance

of our scheme for various configurations of these blocks.



1. Introduction

Ptolemy is an object-oriented framework for simulating, prototyping and synthesizing

heterogeneous systems. Ptolemy’s Code Generation environment consists of a number of

domains pertaining to different models of computation and target processors (or languages) and

architectures. Systems are described as block diagrams in the desired code generation domain.

Executing the system generates code for that processor targeting a particular platform, e.g. single

processor, multiple processors or desktop simulation.

In this project, we implemented code generation for the Texas Instruments’ (TI)

TMS320C6x (C6x) processors in the Ptolemy’s C Code Generation (CGC) domain. Our

approach results in significant execution speed improvement over existing CGC blocks.

2. Synchronous Dataflow (SDF)

SDF is a dataflow model in which the number of tokens produced and consumed by each

actor in a graph upon execution is known beforehand and is fixed (and finite) throughout the

execution of the graph. An actor cannot be executed until all of its inputs have the required

number of data tokens [1]. These features allow bounded memory execution and static

scheduling of valid SDF graphs. Multiple sampling rates can be conveniently handled in a

system description adhering to the SDF semantics.

 Optimal scheduling of most practical SDF graphs onto a single processor can be

performed in polynomial time. Heuristics exist that can achieve or approach the lower bound for

program and data memory requirements. Computational resource requirements are known at

compile time and are static throughout the execution of the graph [2]. In this project we focus

solely on the SDF model of computation.



3. TMS320C6x VLIW RISC DSP

Very Long Instruction Word (VLIW) Reduced Instruction Set Computing (RISC)

architecture is very popular in the DSP world because of its ability to take advantage of the

Instruction Level Parallelism (ILP) that is available in typical DSP programs while simplifying

the control logic. While compilers perform poorly for traditional DSPs, those for VLIW RISC

processors are more efficient because of trace scheduling and software pipelining [3].

The TMS320C6x family is a high-end multimedia VLIW RISC processor family whose

architecture and C compiler were co-designed. The C6x and its C Compiler were designed to

ease the task of programming complex applications. Programming the C6x in assembly is very

cumbersome for managing these complex tasks, esp. because of its eight parallel execution units

and a pipeline of 11-16 stages. TI provides optimized assembly code for common DSP structures

such as Finite Impulse Response (FIR) filters and Infinite Impulse Response (IIR) filters.

4. Code Generation for C6x

The functionality of code generation actors lies in their codeblocks which contain generic

C code in the case of CGC domain, which would appear in the final synthesized code. However,

this code would not be optimized for any particular processor. Synthesizing efficient code

requires these codeblocks to be optimized for a target architecture and compiler [4].

We address this problem by embedding function calls to a library of optimized C-callable

assembly kernels provided by Texas Instruments (TI) for common DSP operations. This library

can be upgraded without any change in the system or applications. This approach is particularly

advantageous for processors that are very difficult and tedious to program directly in assembly.

Ideally, each supported processor should have a separate code generation domain so that

Ptolemy can support implementation-independent design and handle constraints such as



processor specific data types. However, we confined our work to adding a new target and stars to

the CGC domain.

5.  Implementation

We used the CGC domain as our basic framework and built a C-callable library of

functions optimized for the C6x processors. When the generated C-code is linked across this

library, optimized executable code is synthesized. Presently, the library contains functions for

single rate FIR & IIR filters. We implemented multirate FIR filter by using a combination of

single rate FIR filters. TI’s assembly kernels have certain restrictions, which are also inherited by

our stars.

Texas Instruments’ FIR kernel had to be fixed for two bugs. In the first case, the address

mode register was being set up in parallel with an instruction that required the new value of the

same. In the second case, an instruction resetting a circular buffer pointer was performing linear

instead of modulo subtraction.

Using the basic FIR filter we also implemented a decimator, interpolator and a sampling

rate converter. This was done in order to meet our objective of implementing a 44100:48000

sampling rate converter which is used for conversion from Compact Disc (CD) to Digital Audio

Tape (DAT) format. We compared a C6x version with an equivalent implementation that uses

existing CGC stars.

5.1 Polyphase implementation

The decimator, interpolator and the sampling rate converter were implemented using

efficient polyphase representation. The Polyphase implementation of a decimator (interpolator)

with decimation factor (interpolation factor) D (U) is D (U) times more efficient than the direct

form implementation. A U/D sampling rate converter implemented in polyphase form is U*D



times more efficient than the direct form implementation. The CGC multirate FIR star also

employs polyphase representation for efficient implementation [5].

Figure 9 illustrates polyphase implementation for an interpolator and figure 11 illustrates

the same for a decimator. Figure 10 illustrates how to commute a delay through an upsampler

and a downsampler. A single delay (z-1) can be decomposed into a U*u advance and a D*d delay

subject to U*u + D*d = -1 being satisfied for integer u and d. The upsampler followed by an

advance of U*u is equivalent to an advance of u followed by the upsampler. Similarly, a delay of

D*d followed by the downsampler is equivalent to the downsampler followed by a delay of d.

Then, if U and D are co-prime, the upsampler and downsampler can commute. This way an L-tap

FIR filter between an upsampler and a downsampler (figure 9a) can be decomposed into U*D

single rate FIR filters, each of length L / (U*D) samples.

5.2 Target

We made a target class “c6xtarget” and instantiated an object named C6X. This target is

visible in the CGC’s target menu. Simulator specific instructions can be inserted in the C code

before or after each actor firing. We could not test it completely since we did not have the C6x

compiler and simulator for Unix. So the comparisons have been made on Code Composer Studio

running on Windows NT.

6. Results

We compared the performance of code generated by our C6x stars with that of code

generated by CGC stars in terms of cycle count, code size and data size. All comparisons are

with level-3 optimizations. Since Ptolemy does not support short as a data type, comparisons

were made for floating-point stars only. Since CGC generates code with double data type, we

manually replaced all instances of double with float. However, we could not get the CGC IIR



universe to run properly with these replacements because the –O3 compile option skips the SDF

loop altogether. Hence, for IIR filters, the comparisons are for the double data type for CGC.

6.1 FIR Filters

Figures 1, 2 and 4 show the cycle counts, code sizes and data sizes respectively for FIR

filters versus filter length for CGC and C6x FIR stars. In terms of cycle counts, an improvement

of 10 to 40 times is observed (figure 3). An asymptotic improvement in performance of 62 times

is observed. This substantial improvement in speed is expected since the C6x compiler cannot

understand and exploit the global computational structures of FIR filters from the C

implementation. Therefore it cannot allocate DSP specific features such as circular buffers for an

efficient implementation.

6.2 IIR Filters

Figures 5, 6 and 8 show the similar performance graphs for IIR filters. A speed

improvement of 4 to18 times is observed (figure 7). The CGC IIR stars uses a 5-multiply IIR

structure whereas the C6x IIR star uses a 4-multiply structure by combining the scale factors

from all biquad sections into one. A large increase in code size for the CGC star is also observed

because the scheduler generates code for each instance of a biquad star, whereas for the C6x star

one instance handles all of the biquad sections.

6.3 CD to DAT sample rate conversion universe

Our project goal was to demonstrate the working of C6x stars by integrating them into a

CD to DAT format conversion demonstration. The following table summarizes the comparison

between CGC and C6x CD to DAT universes. Running the CGC CD-to-DAT universe with the

float type and then with the double type, we inferred that the former runs approximately 1.4

times faster.



CD to DAT demo CGC

float/double

C6x Remarks

Cycle count per sample 7290/10020 1400 C6x is 5.2x faster

Code size 15930/-- 68030 4.3x

Data size 327860/-- 334760 Almost same

One restriction that the C6x FIR star inherits from the TI’s routine is that its length must

be a multiple of 4. Most of the polyphase component filters in the demonstration require only a

single tap but the C6x star does four times more computation. For example, for the 5:7 converter,

a 140-tap filter would run as fast as the 32-tap filter used in the demonstration. Thus, in a more

computationally intensive system, the C6x stars are expected to perform even better than their

CGC counterparts. As an illustration, the upsampler (2:1) in the demonstration has 173 taps and

its C6x version runs 34 times faster.

7. Conclusion

We have demonstrated that a library-based approach to code synthesis for complex

processors is superior to generic C code synthesis, esp. for computationally intensive DSP

algorithms. This approach also allows upgradability and scalability. We realized that compilers

still lack the ability to exploit highly regular computational structures like FIR or IIR filters.
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Figure 9: Multirate FIR filter
cascaded with upsampler and
downsampler.
(a) Direct form
(b) Polyphase expansion for

the upsampling operator.

Figure 10: Commuting
upsampler and downsampler
through delay.
(a) The problem
(b) Taking delay out such

that U*u - D*d = -1
(c) Commuting upsampler

and downsampler.

Figure 11: FIR filter
followed by a downsampler.
(a) Direct form
(b) polyphase form.
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